KLA-Tencor, 335 Elan Village Ln Unit 118, San Jose, CA, USA.
IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):548-63. doi: 10.1109/TPAMI.2011.162.
Active stereo vision is a method of 3D surface scanning involving the projecting and capturing of a series of light patterns where depth is derived from correspondences between the observed and projected patterns. In contrast, passive stereo vision reveals depth through correspondences between textured images from two or more cameras. By employing a projector, active stereo vision systems find correspondences between two or more cameras, without ambiguity, independent of object texture. In this paper, we present a hybrid 3D reconstruction framework that supplements projected pattern correspondence matching with texture information. The proposed scheme consists of using projected pattern data to derive initial correspondences across cameras and then using texture data to eliminate ambiguities. Pattern modulation data are then used to estimate error models from which Kullback-Leibler divergence refinement is applied to reduce misregistration errors. Using only a small number of patterns, the presented approach reduces measurement errors versus traditional structured light and phase matching methodologies while being insensitive to gamma distortion, projector flickering, and secondary reflections. Experimental results demonstrate these advantages in terms of enhanced 3D reconstruction performance in the presence of noise, deterministic distortions, and conditions of texture and depth contrast.
主动立体视觉是一种 3D 表面扫描方法,涉及一系列光模式的投射和捕捉,其中深度是从观察到的和投射的模式之间的对应关系中得出的。相比之下,被动立体视觉通过来自两个或多个摄像机的纹理图像之间的对应关系来揭示深度。通过使用投影仪,主动立体视觉系统可以在不依赖物体纹理的情况下,在两个或多个摄像机之间找到对应关系,而不会产生歧义。在本文中,我们提出了一种混合 3D 重建框架,该框架通过将纹理信息与投射图案对应匹配进行补充。所提出的方案包括使用投射图案数据在摄像机之间导出初始对应关系,然后使用纹理数据消除歧义。然后使用模式调制数据来估计误差模型,应用 Kullback-Leibler 散度细化来减少配准误差。与传统的结构光和相位匹配方法相比,所提出的方法仅使用少量图案即可减少测量误差,并且对伽马失真、投影仪闪烁和二次反射不敏感。实验结果表明,在存在噪声、确定性失真以及纹理和深度对比度条件下,该方法在增强 3D 重建性能方面具有这些优势。