Suppr超能文献

通过显式特征映射实现高效的加法核。

Efficient additive kernels via explicit feature maps.

机构信息

Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom. vedaldirobots.ox.ac.uk

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):480-92. doi: 10.1109/TPAMI.2011.153.

Abstract

Large scale nonlinear support vector machines (SVMs) can be approximated by linear ones using a suitable feature map. The linear SVMs are in general much faster to learn and evaluate (test) than the original nonlinear SVMs. This work introduces explicit feature maps for the additive class of kernels, such as the intersection, Hellinger's, and χ2 kernels, commonly used in computer vision, and enables their use in large scale problems. In particular, we: 1) provide explicit feature maps for all additive homogeneous kernels along with closed form expression for all common kernels; 2) derive corresponding approximate finite-dimensional feature maps based on a spectral analysis; and 3) quantify the error of the approximation, showing that the error is independent of the data dimension and decays exponentially fast with the approximation order for selected kernels such as χ2. We demonstrate that the approximations have indistinguishable performance from the full kernels yet greatly reduce the train/test times of SVMs. We also compare with two other approximation methods: Nystrom's approximation of Perronnin et al., which is data dependent, and the explicit map of Maji and Berg for the intersection kernel, which, as in the case of our approximations, is data independent. The approximations are evaluated on a number of standard data sets, including Caltech-101, Daimler-Chrysler pedestrians, and INRIA pedestrians.

摘要

大尺度非线性支持向量机(SVM)可以通过合适的特征映射近似为线性 SVM。线性 SVM 通常比原始非线性 SVM 更快地学习和评估(测试)。这项工作为常用的计算机视觉中的核的加性类(如交叠核、Hellinger 核和 χ2 核)引入了显式特征映射,并使其能够用于大规模问题。具体来说,我们:1)为所有加性齐次核提供显式特征映射,并为所有常见核提供闭式表达式;2)基于谱分析推导出相应的近似有限维特征映射;3)量化逼近误差,表明对于 χ2 等选定核,误差与数据维度无关,并随逼近阶呈指数衰减。我们证明了这些逼近在性能上与全核没有区别,但大大减少了 SVM 的训练/测试时间。我们还与另外两种近似方法进行了比较:Perronnin 等人的 Nystrom 近似,它是数据相关的,以及 Maji 和 Berg 针对交叠核的显式映射,就像我们的近似方法一样,它是数据独立的。这些近似方法在包括 Caltech-101、Daimler-Chrysler 行人数据集和 INRIA 行人数据集在内的多个标准数据集上进行了评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验