Suppr超能文献

过表达精脒合酶的转基因小鼠的特征。

Characterization of transgenic mice with overexpression of spermidine synthase.

机构信息

Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, PO Box 850, 500 University Drive, Hershey, PA 17033, USA.

出版信息

Amino Acids. 2012 Feb;42(2-3):495-505. doi: 10.1007/s00726-011-1028-6. Epub 2011 Aug 2.

Abstract

A composite cytomegalovirus-immediate early gene enhancer/chicken β-actin promoter (CAG) was utilized to generate transgenic mice that overexpress human spermidine synthase (SpdS) to determine the impact of elevated spermidine synthase activity on murine development and physiology. CAG-SpdS mice were viable and fertile and tissue SpdS activity was increased up to ninefold. This increased SpdS activity did not result in a dramatic elevation of spermidine or spermine levels but did lead to a 1.5- to 2-fold reduction in tissue spermine:spermidine ratio in heart, muscle and liver tissues with the highest levels of SpdS activity. This new mouse model enabled simultaneous overexpression of SpdS and other polyamine biosynthetic enzymes by combining transgenic animals. The combined overexpression of both SpdS and spermine synthase (SpmS) in CAG-SpdS/CAG-SpmS bitransgenic mice did not impair viability or lead to overt developmental abnormalities but instead normalized the elevated tissue spermine:spermidine ratios of CAG-SpmS mice. The CAG-SpdS mice were bred to MHC-AdoMetDC mice with a >100-fold increase in cardiac S-adenosylmethionine decarboxylase (AdoMetDC) activity to determine if elevated dcAdoMet would facilitate greater spermidine accumulation in mice with SpdS overexpression. CAG-SpdS/MHC-AdoMetDC bitransgenic animals were produced at the expected frequency and exhibited cardiac polyamine levels comparable to MHC-AdoMetDC littermates. Taken together these results indicate that SpdS levels are not rate limiting in vivo for polyamine biosynthesis and are unlikely to exert significant regulatory effects on cellular polyamine content and function.

摘要

利用复合巨细胞病毒即时早期基因增强子/鸡β-肌动蛋白启动子(CAG)生成了过表达人精脒合酶(SpdS)的转基因小鼠,以确定升高的精脒合酶活性对小鼠发育和生理学的影响。CAG-Spds 小鼠具有活力和繁殖力,组织 SpdS 活性增加了 9 倍。这种 SpdS 活性的增加并没有导致精脒或精胺水平的显著升高,但确实导致心脏、肌肉和肝脏组织中精胺:精脒比率降低 1.5-2 倍,而 SpdS 活性最高。这种新的小鼠模型通过组合转基因动物,使 SpdS 和其他多胺生物合成酶同时过表达。在 CAG-Spds/CAG-Spms 双转基因小鼠中同时过表达 SpdS 和精脒合酶(SpmS)并没有损害活力或导致明显的发育异常,而是使 CAG-Spms 小鼠升高的组织精胺:精脒比率正常化。将 CAG-Spds 小鼠与 MHC-AdoMetDC 小鼠杂交,后者心脏 S-腺苷甲硫氨酸脱羧酶(AdoMetDC)活性增加了 100 多倍,以确定升高的 dcAdoMet 是否会促进 SpdS 过表达小鼠中精脒的积累。以预期的频率产生了 CAG-Spds/MHC-AdoMetDC 双转基因动物,并表现出与 MHC-AdoMetDC 同窝仔相似的心脏多胺水平。总之,这些结果表明 SpdS 水平在体内不是多胺生物合成的限速因素,不太可能对细胞多胺含量和功能产生显著的调节作用。

相似文献

1
Characterization of transgenic mice with overexpression of spermidine synthase.
Amino Acids. 2012 Feb;42(2-3):495-505. doi: 10.1007/s00726-011-1028-6. Epub 2011 Aug 2.
2
Characterization of transgenic mice with widespread overexpression of spermine synthase.
Biochem J. 2004 Aug 1;381(Pt 3):701-7. doi: 10.1042/BJ20040419.
5
Transgenic mice over-expressing the human spermidine synthase gene.
Biochem J. 1993 Jul 15;293 ( Pt 2)(Pt 2):513-6. doi: 10.1042/bj2930513.
7
Genomic organization of plant aminopropyl transferases.
Plant Physiol Biochem. 2010 Jul;48(7):574-90. doi: 10.1016/j.plaphy.2010.03.004. Epub 2010 Mar 18.
8
Overproduction of cardiac S-adenosylmethionine decarboxylase in transgenic mice.
Biochem J. 2006 Jan 1;393(Pt 1):295-302. doi: 10.1042/BJ20051196.
9
Characterization of spermidine synthase and spermine synthase--The polyamine-synthetic enzymes that induce early flowering in Gentiana triflora.
Biochem Biophys Res Commun. 2015 Aug 7;463(4):781-6. doi: 10.1016/j.bbrc.2015.06.013. Epub 2015 Jun 5.

引用本文的文献

1
Exogenous spermidine affects polyamine metabolism in the mouse hypothalamus.
Open Life Sci. 2021 Jan 20;16(1):39-45. doi: 10.1515/biol-2021-0006. eCollection 2021.
2
In Silico Prediction of Metabolic Fluxes in Cancer Cells with Altered S-adenosylmethionine Decarboxylase Activity.
Cell Biochem Biophys. 2021 Mar;79(1):37-48. doi: 10.1007/s12013-020-00949-8. Epub 2020 Oct 11.
3
Polyamines in mammalian pathophysiology.
Cell Mol Life Sci. 2019 Oct;76(20):3987-4008. doi: 10.1007/s00018-019-03196-0. Epub 2019 Jun 21.
4
GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation.
Stem Cell Reports. 2018 Jan 9;10(1):287-299. doi: 10.1016/j.stemcr.2017.11.009. Epub 2017 Dec 14.
5
Polyamines and cancer: implications for chemotherapy and chemoprevention.
Expert Rev Mol Med. 2013 Feb 22;15:e3. doi: 10.1017/erm.2013.3.
7
Polyamines in aging and disease.
Aging (Albany NY). 2011 Aug;3(8):716-32. doi: 10.18632/aging.100361.

本文引用的文献

1
Spermine synthase activity affects the content of decarboxylated S-adenosylmethionine.
Biochem J. 2011 Jan 1;433(1):139-44. doi: 10.1042/BJ20101228.
2
Can autophagy promote longevity?
Nat Cell Biol. 2010 Sep;12(9):842-6. doi: 10.1038/ncb0910-842.
3
Chemoprevention of B-cell lymphomas by inhibition of the Myc target spermidine synthase.
Cancer Prev Res (Phila). 2010 Feb;3(2):140-7. doi: 10.1158/1940-6207.CAPR-09-0166. Epub 2010 Jan 26.
4
S-Adenosylmethionine decarboxylase.
Essays Biochem. 2009 Nov 4;46:25-45. doi: 10.1042/bse0460003.
5
Functional significance of eIF5A and its hypusine modification in eukaryotes.
Amino Acids. 2010 Feb;38(2):491-500. doi: 10.1007/s00726-009-0408-7. Epub 2009 Dec 8.
6
Induction of autophagy by spermidine promotes longevity.
Nat Cell Biol. 2009 Nov;11(11):1305-14. doi: 10.1038/ncb1975. Epub 2009 Oct 4.
7
Mouse models to investigate the function of spermine.
Commun Integr Biol. 2009 May;2(3):271-4. doi: 10.4161/cib.2.3.8225.
8
Mammalian polyamine metabolism and function.
IUBMB Life. 2009 Sep;61(9):880-94. doi: 10.1002/iub.230.
10
Arginine metabolism and nutrition in growth, health and disease.
Amino Acids. 2009 May;37(1):153-68. doi: 10.1007/s00726-008-0210-y. Epub 2008 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验