Suppr超能文献

动力蛋白卷曲螺旋臂中的构象变化如何驱动动力蛋白与微管的结合?

How does a registry change in dynein's coiled-coil stalk drive binding of dynein to microtubules?

机构信息

Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea.

出版信息

Biochemistry. 2011 Sep 6;50(35):7629-36. doi: 10.1021/bi200834k. Epub 2011 Aug 10.

Abstract

Dynein is a motor protein that transports cellular cargo along the microtubule (MT) by consuming ATP. Dynein's microtubule-binding domain (MTBD) is separated from the ATP-binding core by a ~15 nm stalk that consists of two α-helices forming an antiparallel coiled coil. It was previously suggested that the coiled-coil stalk creates a registry shift to modulate its binding affinity for MT. A crystal structure of the low-affinity form of MTBD was determined, but that of the high-affinity form with the registry shift is not yet available. In this study, we obtained an all-atom model structure for the high-affinity form of MTBD bound to MT by an anisotropic network model, protein-protein docking, and molecular dynamics simulations. We observe that the magnitude of the coiled-coil helix sliding is dramatically reduced near the two prolines that form the stalk-MTBD boundary and subsequently transformed to cyclic movements of MTBD helices, leading to formation of a new salt bridge with MT at the binding interface. The proposed mechanism explains the roles of highly conserved residues such as the two prolines at the stalk-MTBD boundary, the nonpolar tryptophan and proline residues near the binding interface, and the electropositive residues forming salt bridges with MT.

摘要

动力蛋白是一种沿微管(MT)运输细胞货物的马达蛋白,通过消耗 ATP 实现。动力蛋白的微管结合域(MTBD)与 ATP 结合核心由一个由两个α-螺旋形成的反平行螺旋卷曲组成的约 15nm 长的茎隔开。此前有人提出,卷曲螺旋茎形成一个注册位移,从而调节其与 MT 的结合亲和力。已经确定了低亲和力形式的 MTBD 的晶体结构,但尚未获得具有注册位移的高亲和力形式的晶体结构。在这项研究中,我们通过各向异性网络模型、蛋白质-蛋白质对接和分子动力学模拟,获得了与 MT 结合的 MTBD 高亲和力形式的全原子模型结构。我们观察到,在形成茎-MTBD 边界的两个脯氨酸附近,螺旋滑动的幅度大大减小,随后转化为 MTBD 螺旋的循环运动,导致在结合界面形成与 MT 的新盐桥。所提出的机制解释了高度保守的残基的作用,例如茎-MTBD 边界的两个脯氨酸、结合界面附近的非极性色氨酸和脯氨酸残基以及与 MT 形成盐桥的正电残基。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验