Suppr超能文献

长程静电相互作用显著调节了动力蛋白与微管的亲和力。

Long-range electrostatic interactions significantly modulate the affinity of dynein for microtubules.

机构信息

Department of Physics and Astronomy, Clemson University, Clemson, South Carolina.

Department of Physics and Astronomy, Clemson University, Clemson, South Carolina; Eukaryotic Pathogen Innovations Center, Clemson, University, Clemson, South Carolina.

出版信息

Biophys J. 2022 May 3;121(9):1715-1726. doi: 10.1016/j.bpj.2022.03.029. Epub 2022 Mar 26.

Abstract

The dynein family of microtubule minus-end-directed motor proteins drives diverse functions in eukaryotic cells, including cell division, intracellular transport, and flagellar beating. Motor protein processivity, which characterizes how far a motor walks before detaching from its filament, depends on the interaction between its microtubule-binding domain (MTBD) and the microtubule. Dynein's MTBD switches between high- and low-binding affinity states as it steps. Significant structural and functional data show that specific salt bridges within the MTBD and between the MTBD and the microtubule govern these affinity state shifts. However, recent computational work suggests that nonspecific, long-range electrostatic interactions between the MTBD and the microtubule may also play an important role in the processivity of dynein. To investigate this hypothesis, we mutated negatively charged amino acids remote from the dynein MTBD-microtubule-binding interface to neutral residues and measured the binding affinity using microscale thermophoresis and optical tweezers. We found a significant increase in the binding affinity of the mutated MTBDs for microtubules. Furthermore, we found that charge screening by free ions in solution differentially affected the binding and unbinding rates of MTBDs to microtubules. Together, these results demonstrate a significant role for long-range electrostatic interactions in regulating dynein-microtubule affinity. Moreover, these results provide insight into the principles that potentially underlie the biophysical differences between molecular motors with various processivities and protein-protein interactions more generally.

摘要

动力蛋白是微管负端定向的微管 motor 蛋白家族,在真核细胞中驱动多种功能,包括细胞分裂、细胞内运输和鞭毛摆动。motor 蛋白的行进能力(processivity),即 motor 在从其细丝上脱离之前行进的距离,取决于其微管结合域(MTBD)与微管之间的相互作用。动力蛋白在步进过程中,其 MTBD 在高亲和和低亲和状态之间切换。大量结构和功能数据表明,MTBD 内和 MTBD 与微管之间的特定盐桥控制着这些亲和状态的转变。然而,最近的计算工作表明,MTBD 与微管之间的非特异性、长程静电相互作用也可能在动力蛋白的行进能力中发挥重要作用。为了研究这一假设,我们将远离动力蛋白 MTBD-微管结合界面的带负电荷的氨基酸突变为中性残基,并使用微尺度热泳和光镊测量结合亲和力。我们发现突变的 MTBD 与微管的结合亲和力显著增加。此外,我们发现溶液中的游离离子对 MTBD 与微管的结合和解离速率有不同的屏蔽作用。这些结果共同表明,长程静电相互作用在调节动力蛋白-微管亲和力方面起着重要作用。此外,这些结果为潜在的原理提供了深入的了解,这些原理可能是具有不同行进能力的分子马达和更普遍的蛋白质-蛋白质相互作用之间的生物物理差异的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a802/9117880/129856404a63/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验