Suppr超能文献

利用酿酒酵母聚合酶 η 进行羧甲基化 DNA 损伤的体外复制研究。

In vitro replication studies of carboxymethylated DNA lesions with Saccharomyces cerevisiae polymerase η.

机构信息

Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States.

出版信息

Biochemistry. 2011 Sep 6;50(35):7666-73. doi: 10.1021/bi2007417. Epub 2011 Aug 11.

Abstract

Humans are exposed to N-nitroso compounds (NOCs) both endogenously and exogenously from a number of environmental sources, and NOCs are both mutagenic and carcinogenic. After metabolic activation, some NOCs can induce carboxymethylation of nucleobases through a diazoacetate intermediate, which could give rise to p53 mutations similar to those seen in human gastrointestinal cancers. It was previously found that the growth of polymerase η-deficient human cells was inhibited by treatment with azaserine, a DNA carboxymethylation agent, suggesting the importance of this polymerase in bypassing the azaserine-induced carboxymethylated DNA lesions. In this study, we examined how carboxymethylated DNA lesions, which included N(6)-carboxymethyl-2'-deoxyadenosine (N(6)-CMdA), N(4)-carboxymethyl-2'-deoxycytidine (N(4)-CMdC), N3-carboxymethylthymidine (N3-CMdT), and O(4)-carboxymethylthymidine (O(4)-CMdT), perturbed the efficiency and fidelity of DNA replication mediated by Saccharomyces cerevisiae polymerase η (pol η). Our results from steady-state kinetic assay showed that pol η could readily bypass and extend past N(6)-CMdA and incorporated the correct nucleotides opposite the lesion and its neighboring 5'-nucleoside with high efficiency. By contrast, the polymerase could bypass N(4)-CMdC inefficiently, with substantial misincorporation of dCMP followed by dAMP, though pol η could extend past the lesion with high fidelity and efficiency when dGMP was incorporated opposite the lesion. On the other hand, yeast pol η experienced great difficulty in bypassing O(4)-CMdT and N3-CMdT, and the polymerase inserted preferentially the incorrect dGMP opposite these two DNA lesions; the extension step, nevertheless, occurred with high fidelity and efficiency when the correct dAMP was opposite the lesion, as opposed to the preferentially incorporated incorrect dGMP. These results suggest that these lesions may contribute significantly to diazoacetate-induced mutations and those in the p53 gene observed in human gastrointestinal tumors.

摘要

人类会通过多种环境来源,在体内和体外接触到 N-亚硝基化合物(NOCs),而 NOCs 具有致突变性和致癌性。经过代谢激活后,一些 NOCs 可以通过重氮乙酸中间产物诱导碱基的羧甲基化,这可能导致类似于人类胃肠道癌症中观察到的 p53 突变。先前的研究发现,聚合酶 η 缺陷型人类细胞的生长受到氮杂丝氨酸(一种 DNA 羧甲基化剂)处理的抑制,这表明该聚合酶在绕过氮杂丝氨酸诱导的羧甲基化 DNA 损伤方面非常重要。在这项研究中,我们研究了包括 N(6)-羧甲基-2'-脱氧腺苷(N(6)-CMdA)、N(4)-羧甲基-2'-脱氧胞苷(N(4)-CMdC)、N3-羧甲基胸腺嘧啶(N3-CMdT)和 O(4)-羧甲基胸腺嘧啶(O(4)-CMdT)在内的羧甲基化 DNA 损伤,是如何影响酿酒酵母聚合酶 η(pol η)介导的 DNA 复制效率和保真度的。我们从稳态动力学测定的结果表明,pol η 可以轻松地绕过并延伸 N(6)-CMdA,并高效地将正确的核苷酸掺入到损伤及其相邻的 5'-核苷上。相比之下,聚合酶绕过 N(4)-CMdC 的效率很低,随后会大量掺入错误的 dCMP,然后是 dAMP,尽管当 dGMP 掺入到损伤处时,pol η 可以以高保真度和效率延伸过去。另一方面,酵母 pol η 很难绕过 O(4)-CMdT 和 N3-CMdT,并且该聚合酶优先将错误的 dGMP 掺入到这两个 DNA 损伤处;然而,当正确的 dAMP 位于损伤处时,延伸步骤会以高保真度和效率发生,而不是优先掺入错误的 dGMP。这些结果表明,这些损伤可能会显著导致重氮乙酸诱导的突变以及人类胃肠道肿瘤中观察到的 p53 基因突变。

相似文献

1
In vitro replication studies of carboxymethylated DNA lesions with Saccharomyces cerevisiae polymerase η.
Biochemistry. 2011 Sep 6;50(35):7666-73. doi: 10.1021/bi2007417. Epub 2011 Aug 11.
2
Replication studies of carboxymethylated DNA lesions in human cells.
Nucleic Acids Res. 2017 Jul 7;45(12):7276-7284. doi: 10.1093/nar/gkx442.
4
In Vitro Lesion Bypass Studies of O(4)-Alkylthymidines with Human DNA Polymerase η.
Chem Res Toxicol. 2016 Apr 18;29(4):669-75. doi: 10.1021/acs.chemrestox.5b00509. Epub 2016 Mar 30.
7
Replication across regioisomeric ethylated thymidine lesions by purified DNA polymerases.
Chem Res Toxicol. 2013 Nov 18;26(11):1730-8. doi: 10.1021/tx4002995. Epub 2013 Nov 1.
8
Chemical synthesis of oligodeoxyribonucleotides containing N3- and O4-carboxymethylthymidine and their formation in DNA.
Nucleic Acids Res. 2009 Feb;37(2):336-45. doi: 10.1093/nar/gkn946. Epub 2008 Nov 28.
9
In-vitro replication studies on O(2)-methylthymidine and O(4)-methylthymidine.
Chem Res Toxicol. 2012 Nov 19;25(11):2523-31. doi: 10.1021/tx300325q. Epub 2012 Nov 8.
10

引用本文的文献

1
Formation of Carboxymethyl-Phosphotriester Adducts in DNA.
Chem Res Toxicol. 2025 May 19;38(5):892-899. doi: 10.1021/acs.chemrestox.4c00547. Epub 2025 Apr 16.
3
Enzymatic bypass of an N-deoxyadenosine DNA-ethylene dibromide-peptide cross-link by translesion DNA polymerases.
J Biol Chem. 2021 Jan-Jun;296:100444. doi: 10.1016/j.jbc.2021.100444. Epub 2021 Feb 20.
4
Polymerase synthesis of four-base DNA from two stable dimeric nucleotides.
Nucleic Acids Res. 2019 Oct 10;47(18):9495-9501. doi: 10.1093/nar/gkz741.
5
Replication studies of carboxymethylated DNA lesions in human cells.
Nucleic Acids Res. 2017 Jul 7;45(12):7276-7284. doi: 10.1093/nar/gkx442.
6
Formation of S-[2-(N-Deoxyadenosinyl)ethyl]glutathione in DNA and Replication Past the Adduct by Translesion DNA Polymerases.
Chem Res Toxicol. 2017 May 15;30(5):1188-1196. doi: 10.1021/acs.chemrestox.7b00022. Epub 2017 Apr 14.
8
Lesion Orientation of -Alkylthymidine Influences Replication by Human DNA Polymerase .
Chem Sci. 2016 Aug 1;7(8):4896-4904. doi: 10.1039/C6SC00666C. Epub 2016 Apr 26.
9
Roles of Aag, Alkbh2, and Alkbh3 in the Repair of Carboxymethylated and Ethylated Thymidine Lesions.
ACS Chem Biol. 2016 May 20;11(5):1332-8. doi: 10.1021/acschembio.6b00085. Epub 2016 Mar 4.
10
Kinetic analysis of bypass of 7,8-dihydro-8-oxo-2'-deoxyguanosine by the catalytic core of yeast DNA polymerase η.
Biochimie. 2016 Feb;121:161-9. doi: 10.1016/j.biochi.2015.12.009. Epub 2015 Dec 15.

本文引用的文献

1
High-throughput analysis of the mutagenic and cytotoxic properties of DNA lesions by next-generation sequencing.
Nucleic Acids Res. 2011 Aug;39(14):5945-54. doi: 10.1093/nar/gkr159. Epub 2011 Apr 5.
2
The roles of DNA polymerases κ and ι in the error-free bypass of N2-carboxyalkyl-2'-deoxyguanosine lesions in mammalian cells.
J Biol Chem. 2011 May 20;286(20):17503-11. doi: 10.1074/jbc.M111.232835. Epub 2011 Mar 28.
4
Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation.
Carcinogenesis. 2010 Jan;31(1):59-70. doi: 10.1093/carcin/bgp262. Epub 2009 Oct 29.
6
Chemical synthesis of oligodeoxyribonucleotides containing N3- and O4-carboxymethylthymidine and their formation in DNA.
Nucleic Acids Res. 2009 Feb;37(2):336-45. doi: 10.1093/nar/gkn946. Epub 2008 Nov 28.
7
Efficient and accurate bypass of N2-(1-carboxyethyl)-2'-deoxyguanosine by DinB DNA polymerase in vitro and in vivo.
Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8679-84. doi: 10.1073/pnas.0711546105. Epub 2008 Jun 17.
8
What a difference a decade makes: insights into translesion DNA synthesis.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8. doi: 10.1073/pnas.0704219104. Epub 2007 Sep 26.
9
Translesion synthesis: Y-family polymerases and the polymerase switch.
DNA Repair (Amst). 2007 Jul 1;6(7):891-9. doi: 10.1016/j.dnarep.2007.02.003. Epub 2007 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验