Suppr超能文献

校准新型多传感器身体活动测量系统。

Calibrating a novel multi-sensor physical activity measurement system.

机构信息

Department of Kinesiology, University of Massachusetts, 30 Eastman Lane, Amherst, MA 01003, USA.

出版信息

Physiol Meas. 2011 Sep;32(9):1473-89. doi: 10.1088/0967-3334/32/9/009. Epub 2011 Aug 3.

Abstract

Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper describes a novel multi-sensor 'integrated PA measurement system' (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors versus outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance the feasibility of free-living use are proposed and refinement of the prediction techniques is discussed.

摘要

推进身体活动 (PA) 监测领域需要开发创新的多传感器测量系统,这些系统在自由生活环境中是可行的。同样重要的是使用新的分析技术来组合和处理这些多传感器信号。本文描述了一种新颖的多传感器“综合 PA 测量系统”(IMS),用于校准 IMS 的实验室方法、用于从传感器信号预测多个变量的技术,并提出了设计更改以提高在自由生活环境中部署 IMS 的可行性。IMS 由臀部和手腕加速度传感器、躯干上的两个压电呼吸传感器和一个紫外线辐射传感器组成,以获取 PA 的环境信息(室内与室外)。在 IMS 的基于实验室的校准过程中,参与者穿着便携式代谢单元(标准测量)和 IMS 进行七种不同的日常和自由生活活动时,收集了数据。本文介绍了对前 50 名成年参与者的数据分析。这些分析用于确定 IMS 是否可用于预测感兴趣的变量。最后,提出了增强 IMS 在自由生活使用中的可行性的物理修改,并讨论了预测技术的改进。

相似文献

1
Calibrating a novel multi-sensor physical activity measurement system.
Physiol Meas. 2011 Sep;32(9):1473-89. doi: 10.1088/0967-3334/32/9/009. Epub 2011 Aug 3.
2
ZigBee-based wireless multi-sensor system for physical activity assessment.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:846-9. doi: 10.1109/IEMBS.2011.6090193.
3
Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1511-4. doi: 10.1109/IEMBS.2007.4352588.
4
Physical Activity Classification for Elderly People in Free-Living Conditions.
IEEE J Biomed Health Inform. 2019 Jan;23(1):197-207. doi: 10.1109/JBHI.2018.2820179. Epub 2018 Mar 28.
5
Automatic Recognition of Activities of Daily Living Utilizing Insole-Based and Wrist-Worn Wearable Sensors.
IEEE J Biomed Health Inform. 2018 Jul;22(4):979-988. doi: 10.1109/JBHI.2017.2734803. Epub 2017 Aug 1.
6
Using sensors to measure activity in people with stroke.
Top Stroke Rehabil. 2011 Nov-Dec;18(6):746-57. doi: 10.1310/tsr1806-746.
7
Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
Med Eng Phys. 2014 Jun;36(6):779-85. doi: 10.1016/j.medengphy.2014.02.012. Epub 2014 Mar 11.
8
A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
Physiol Meas. 2014 Nov;35(11):2191-203. doi: 10.1088/0967-3334/35/11/2191. Epub 2014 Oct 23.
9
Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
Hum Mov Sci. 2015 Apr;40:59-76. doi: 10.1016/j.humov.2014.11.013. Epub 2014 Dec 19.
10
A system for activity recognition using multi-sensor fusion.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7869-72. doi: 10.1109/IEMBS.2011.6091939.

引用本文的文献

1
Choosing the Best Sensor Fusion Method: A Machine-Learning Approach.
Sensors (Basel). 2020 Apr 20;20(8):2350. doi: 10.3390/s20082350.
2
Multi-Sensor Fusion for Activity Recognition-A Survey.
Sensors (Basel). 2019 Sep 3;19(17):3808. doi: 10.3390/s19173808.
3
Actigraphy to Measure Physical Activity in the Intensive Care Unit: A Systematic Review.
J Intensive Care Med. 2020 Nov;35(11):1323-1331. doi: 10.1177/0885066619863654. Epub 2019 Jul 22.
4
Virtual Sensors for Optimal Integration of Human Activity Data.
Sensors (Basel). 2019 Apr 29;19(9):2017. doi: 10.3390/s19092017.
5
Virtual Spirometry and Activity Monitoring Using Multichannel Electrical Impedance Plethysmographs in Ambulatory Settings.
IEEE Trans Biomed Circuits Syst. 2017 Aug;11(4):832-848. doi: 10.1109/TBCAS.2017.2688339. Epub 2017 May 23.
6
Objective Assessment of Physical Activity: Classifiers for Public Health.
Med Sci Sports Exerc. 2016 May;48(5):951-7. doi: 10.1249/MSS.0000000000000841.
7
Validity and reliability of Nike + Fuelband for estimating physical activity energy expenditure.
BMC Sports Sci Med Rehabil. 2015 Jun 30;7:14. doi: 10.1186/s13102-015-0008-7. eCollection 2015.
8
Comparison of raw acceleration from the GENEA and ActiGraph™ GT3X+ activity monitors.
Sensors (Basel). 2013 Oct 30;13(11):14754-63. doi: 10.3390/s131114754.
9
Simple to complex modeling of breathing volume using a motion sensor.
Sci Total Environ. 2013 Jun 1;454-455:184-8. doi: 10.1016/j.scitotenv.2013.02.092. Epub 2013 Mar 27.
10
Computational methods for estimating energy expenditure in human physical activities.
Med Sci Sports Exerc. 2012 Nov;44(11):2138-46. doi: 10.1249/MSS.0b013e31825e825a.

本文引用的文献

1
Estimates of ventilation from measurements of rib cage and abdominal distances: a portable device.
Eur J Appl Physiol. 2010 Aug;109(6):1179-89. doi: 10.1007/s00421-010-1463-1. Epub 2010 Apr 9.
2
Development of statistical regression models for ventilation estimation.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1266-9. doi: 10.1109/IEMBS.2009.5333890.
3
An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer.
J Appl Physiol (1985). 2009 Oct;107(4):1300-7. doi: 10.1152/japplphysiol.00465.2009. Epub 2009 Jul 30.
4
Activity identification using body-mounted sensors--a review of classification techniques.
Physiol Meas. 2009 Apr;30(4):R1-33. doi: 10.1088/0967-3334/30/4/R01. Epub 2009 Apr 2.
5
Empirical mode decomposition applied to tissue artifact removal from respiratory signal.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3624-7. doi: 10.1109/IEMBS.2008.4649991.
6
Support vector machine for classification of walking conditions using miniature kinematic sensors.
Med Biol Eng Comput. 2008 Jun;46(6):563-73. doi: 10.1007/s11517-008-0327-x. Epub 2008 Mar 18.
7
Physical activity in the United States measured by accelerometer.
Med Sci Sports Exerc. 2008 Jan;40(1):181-8. doi: 10.1249/mss.0b013e31815a51b3.
8
Energy cost of physical activities in children: validation of SenseWear Armband.
Med Sci Sports Exerc. 2007 Nov;39(11):2076-84. doi: 10.1249/mss.0b013e31814fb439.
9
An artificial neural network model of energy expenditure using nonintegrated acceleration signals.
J Appl Physiol (1985). 2007 Oct;103(4):1419-27. doi: 10.1152/japplphysiol.00429.2007. Epub 2007 Jul 19.
10
Photoprotection by window glass, automobile glass, and sunglasses.
J Am Acad Dermatol. 2006 May;54(5):845-54. doi: 10.1016/j.jaad.2005.11.1082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验