Health Sciences, Northeastern University, 316D Robinson Hall, 360 Huntington Ave., Boston, MA 02115, USA.
Sensors (Basel). 2013 Oct 30;13(11):14754-63. doi: 10.3390/s131114754.
To compare raw acceleration output of the ActiGraph™ GT3X+ and GENEA activity monitors.
A GT3X+ and GENEA were oscillated in an orbital shaker at frequencies ranging from 0.7 to 4.0 Hz (ten 2-min trials/frequency) on a fixed radius of 5.08 cm. Additionally, 10 participants (age = 23.8 ± 5.4 years) wore the GT3X+ and GENEA on the dominant wrist and performed treadmill walking (2.0 and 3.5 mph) and running (5.5 and 7.5 mph) and simulated free-living activities (computer work, cleaning a room, vacuuming and throwing a ball) for 2-min each. A linear mixed model was used to compare the mean triaxial vector magnitude (VM) from the GT3X+ and GENEA at each oscillation frequency. For the human testing protocol, random forest machine-learning technique was used to develop two models using frequency domain (FD) and time domain (TD) features for each monitor. We compared activity type recognition accuracy between the GT3X+ and GENEA when the prediction model was fit using one monitor and then applied to the other. Z-statistics were used to compare the proportion of accurate predictions from the GT3X+ and GENEA for each model.
GENEA produced significantly higher (p < 0.05, 3.5 to 6.2%) mean VM than GT3X+ at all frequencies during shaker testing. Training the model using TD input features on the GENEA and applied to GT3X+ data yielded significantly lower (p < 0.05) prediction accuracy. Prediction accuracy was not compromised when interchangeably using FD models between monitors.
It may be inappropriate to apply a model developed on the GENEA to predict activity type using GT3X+ data when input features are TD attributes of raw acceleration.
比较 ActiGraph™ GT3X+ 和 GENEA 活动监测器的原始加速度输出。
将 GT3X+ 和 GENEA 在固定半径为 5.08 厘米的轨道振荡器中以 0.7 至 4.0 Hz 的频率(每种频率进行 10 次 2 分钟的试验)振荡。此外,10 名参与者(年龄=23.8±5.4 岁)将 GT3X+ 和 GENEA 佩戴在优势手腕上,进行跑步机行走(2.0 和 3.5 英里/小时)和跑步(5.5 和 7.5 英里/小时)以及模拟的日常活动(计算机工作、打扫房间、吸尘和扔球),每次 2 分钟。使用线性混合模型比较 GT3X+和 GENEA 在每个振荡频率下的三轴矢量幅度(VM)均值。对于人体测试方案,使用随机森林机器学习技术为每个监测器的频域(FD)和时域(TD)特征开发了两个模型。我们比较了在使用一个监测器拟合预测模型然后将其应用于另一个监测器时,GT3X+和 GENEA 的活动类型识别准确性。Z 统计量用于比较 GT3X+和 GENEA 对每个模型的准确预测比例。
在振荡器测试中,GENEA 在所有频率下产生的平均 VM 均显著高于 GT3X+(p<0.05,3.5 至 6.2%)。使用 GENEA 上的 TD 输入特征训练模型并应用于 GT3X+数据会导致预测精度显著降低(p<0.05)。当在监测器之间互换使用 FD 模型时,预测精度不会受到影响。
当输入特征是原始加速度的 TD 属性时,可能不适合使用基于 GENEA 开发的模型来预测 GT3X+数据的活动类型。