Suppr超能文献

GENEA 和 ActiGraph™ GT3X+ 活动监测器原始加速度的比较。

Comparison of raw acceleration from the GENEA and ActiGraph™ GT3X+ activity monitors.

机构信息

Health Sciences, Northeastern University, 316D Robinson Hall, 360 Huntington Ave., Boston, MA 02115, USA.

出版信息

Sensors (Basel). 2013 Oct 30;13(11):14754-63. doi: 10.3390/s131114754.

Abstract

PURPOSE

To compare raw acceleration output of the ActiGraph™ GT3X+ and GENEA activity monitors.

METHODS

A GT3X+ and GENEA were oscillated in an orbital shaker at frequencies ranging from 0.7 to 4.0 Hz (ten 2-min trials/frequency) on a fixed radius of 5.08 cm. Additionally, 10 participants (age = 23.8 ± 5.4 years) wore the GT3X+ and GENEA on the dominant wrist and performed treadmill walking (2.0 and 3.5 mph) and running (5.5 and 7.5 mph) and simulated free-living activities (computer work, cleaning a room, vacuuming and throwing a ball) for 2-min each. A linear mixed model was used to compare the mean triaxial vector magnitude (VM) from the GT3X+ and GENEA at each oscillation frequency. For the human testing protocol, random forest machine-learning technique was used to develop two models using frequency domain (FD) and time domain (TD) features for each monitor. We compared activity type recognition accuracy between the GT3X+ and GENEA when the prediction model was fit using one monitor and then applied to the other. Z-statistics were used to compare the proportion of accurate predictions from the GT3X+ and GENEA for each model.

RESULTS

GENEA produced significantly higher (p < 0.05, 3.5 to 6.2%) mean VM than GT3X+ at all frequencies during shaker testing. Training the model using TD input features on the GENEA and applied to GT3X+ data yielded significantly lower (p < 0.05) prediction accuracy. Prediction accuracy was not compromised when interchangeably using FD models between monitors.

CONCLUSIONS

It may be inappropriate to apply a model developed on the GENEA to predict activity type using GT3X+ data when input features are TD attributes of raw acceleration.

摘要

目的

比较 ActiGraph™ GT3X+ 和 GENEA 活动监测器的原始加速度输出。

方法

将 GT3X+ 和 GENEA 在固定半径为 5.08 厘米的轨道振荡器中以 0.7 至 4.0 Hz 的频率(每种频率进行 10 次 2 分钟的试验)振荡。此外,10 名参与者(年龄=23.8±5.4 岁)将 GT3X+ 和 GENEA 佩戴在优势手腕上,进行跑步机行走(2.0 和 3.5 英里/小时)和跑步(5.5 和 7.5 英里/小时)以及模拟的日常活动(计算机工作、打扫房间、吸尘和扔球),每次 2 分钟。使用线性混合模型比较 GT3X+和 GENEA 在每个振荡频率下的三轴矢量幅度(VM)均值。对于人体测试方案,使用随机森林机器学习技术为每个监测器的频域(FD)和时域(TD)特征开发了两个模型。我们比较了在使用一个监测器拟合预测模型然后将其应用于另一个监测器时,GT3X+和 GENEA 的活动类型识别准确性。Z 统计量用于比较 GT3X+和 GENEA 对每个模型的准确预测比例。

结果

在振荡器测试中,GENEA 在所有频率下产生的平均 VM 均显著高于 GT3X+(p<0.05,3.5 至 6.2%)。使用 GENEA 上的 TD 输入特征训练模型并应用于 GT3X+数据会导致预测精度显著降低(p<0.05)。当在监测器之间互换使用 FD 模型时,预测精度不会受到影响。

结论

当输入特征是原始加速度的 TD 属性时,可能不适合使用基于 GENEA 开发的模型来预测 GT3X+数据的活动类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7827/3871080/7faee05d4474/sensors-13-14754f1.jpg

相似文献

1
Comparison of raw acceleration from the GENEA and ActiGraph™ GT3X+ activity monitors.
Sensors (Basel). 2013 Oct 30;13(11):14754-63. doi: 10.3390/s131114754.
2
Physical activity classification using the GENEA wrist-worn accelerometer.
Med Sci Sports Exerc. 2012 Apr;44(4):742-8. doi: 10.1249/MSS.0b013e31823bf95c.
3
Accelerometer counts and raw acceleration output in relation to mechanical loading.
J Biomech. 2012 Feb 2;45(3):448-54. doi: 10.1016/j.jbiomech.2011.12.006. Epub 2012 Jan 2.
4
ActiGraph™ activity monitors: "the firmware effect".
Med Sci Sports Exerc. 2014 Apr;46(4):834-9. doi: 10.1249/MSS.0000000000000145.
5
Validation of the GENEA Accelerometer.
Med Sci Sports Exerc. 2011 Jun;43(6):1085-93. doi: 10.1249/MSS.0b013e31820513be.
6
Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study.
JMIR Mhealth Uhealth. 2019 Feb 6;7(2):e11270. doi: 10.2196/11270.
7
Comparability of measured acceleration from accelerometry-based activity monitors.
Med Sci Sports Exerc. 2015 Jan;47(1):201-10. doi: 10.1249/MSS.0000000000000394.
9
Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts.
J Appl Physiol (1985). 2016 Feb 1;120(3):362-9. doi: 10.1152/japplphysiol.00628.2015. Epub 2015 Dec 3.
10
Performance of Activity Classification Algorithms in Free-Living Older Adults.
Med Sci Sports Exerc. 2016 May;48(5):941-50. doi: 10.1249/MSS.0000000000000844.

引用本文的文献

1
Comparison of raw accelerometry data from ActiGraph, Apple Watch, Garmin, and Fitbit using a mechanical shaker table.
PLoS One. 2024 Mar 29;19(3):e0286898. doi: 10.1371/journal.pone.0286898. eCollection 2024.
2
Development and Calibration of a PATCH Device for Monitoring Children's Heart Rate and Acceleration.
Med Sci Sports Exerc. 2024 Jun 1;56(6):1196-1207. doi: 10.1249/MSS.0000000000003404. Epub 2024 Feb 9.
3
A Transparent Method for Step Detection using an Acceleration Threshold.
J Meas Phys Behav. 2021 Dec;4(4):311-320. doi: 10.1123/jmpb.2021-0011. Epub 2021 Oct 25.
4
Quantifying Physical Activity in Young Children Using a Three-Dimensional Camera.
Sensors (Basel). 2020 Feb 19;20(4):1141. doi: 10.3390/s20041141.
6
Towards a Portable Model to Discriminate Activity Clusters from Accelerometer Data.
Sensors (Basel). 2019 Oct 17;19(20):4504. doi: 10.3390/s19204504.
7
Establishing Raw Acceleration Thresholds to Classify Sedentary and Stationary Behaviour in Children.
Children (Basel). 2018 Dec 19;5(12):172. doi: 10.3390/children5120172.
9
Validation and Comparison of Accelerometers Worn on the Hip, Thigh, and Wrists for Measuring Physical Activity and Sedentary Behavior.
AIMS Public Health. 2016 May 20;3(2):298-312. doi: 10.3934/publichealth.2016.2.298. eCollection 2016.
10
Motion sensors in multiple sclerosis: Narrative review and update of applications.
Expert Rev Med Devices. 2017 Nov;14(11):891-900. doi: 10.1080/17434440.2017.1386550. Epub 2017 Oct 18.

本文引用的文献

1
Simple to complex modeling of breathing volume using a motion sensor.
Sci Total Environ. 2013 Jun 1;454-455:184-8. doi: 10.1016/j.scitotenv.2013.02.092. Epub 2013 Mar 27.
2
Technical variability of the GT3X accelerometer.
Med Eng Phys. 2012 Jul;34(6):787-90. doi: 10.1016/j.medengphy.2012.02.005. Epub 2012 Mar 13.
3
Biomechanical examination of the 'plateau phenomenon' in ActiGraph vertical activity counts.
Physiol Meas. 2012 Feb;33(2):219-30. doi: 10.1088/0967-3334/33/2/219. Epub 2012 Jan 20.
4
ActiGraph and Actical physical activity monitors: a peek under the hood.
Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S86-9. doi: 10.1249/MSS.0b013e3182399f5e.
5
Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field.
Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S1-4. doi: 10.1249/MSS.0b013e3182399b7e.
6
Physical activity classification using the GENEA wrist-worn accelerometer.
Med Sci Sports Exerc. 2012 Apr;44(4):742-8. doi: 10.1249/MSS.0b013e31823bf95c.
7
Calibrating a novel multi-sensor physical activity measurement system.
Physiol Meas. 2011 Sep;32(9):1473-89. doi: 10.1088/0967-3334/32/9/009. Epub 2011 Aug 3.
8
Validation of the GENEA Accelerometer.
Med Sci Sports Exerc. 2011 Jun;43(6):1085-93. doi: 10.1249/MSS.0b013e31820513be.
9
An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer.
J Appl Physiol (1985). 2009 Oct;107(4):1300-7. doi: 10.1152/japplphysiol.00465.2009. Epub 2009 Jul 30.
10
Comparing the performance of three generations of ActiGraph accelerometers.
J Appl Physiol (1985). 2008 Oct;105(4):1091-7. doi: 10.1152/japplphysiol.90641.2008. Epub 2008 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验