Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
Phys Med Biol. 2011 Sep 7;56(17):5535-52. doi: 10.1088/0031-9155/56/17/006. Epub 2011 Aug 3.
Statistical iterative reconstruction (SIR) algorithms have shown potential to substantially improve low-dose cone-beam CT (CBCT) image quality. The penalty term plays an important role in determining the performance of SIR algorithms. In this work, we quantitatively evaluate the impact of the penalties on the performance of a statistics-based penalized weighted least-squares (PWLS) iterative reconstruction algorithm for improving the image quality of low-dose CBCT. Three different edge-preserving penalty terms, exponential form anisotropic quadratic (AQ) penalty (PWLS-Exp), inverse square form AQ penalty (PWLS-InverseSqr) and total variation penalty (PWLS-TV), were compared against the conventional isotropic quadratic form penalty (PWLS-Iso) using both computer simulation and experimental studies. Noise in low-dose CBCT can be substantially suppressed by the PWLS reconstruction algorithm and edges are well preserved by both AQ- and TV-based penalty terms. The noise-resolution tradeoff measurement shows that the PWLS-Exp exhibits the best spatial resolution of all the three anisotropic penalty terms at matched noise level for reconstructing high-contrast objects. For the reconstruction of low-contrast objects, the TV-based penalty outperforms the AQ-based one with better resolution preservation at matched noise levels. Different penalty terms may be used for better edge preservation at different targeted contrast levels.
统计迭代重建(SIR)算法已显示出在大幅提高低剂量锥形束 CT(CBCT)图像质量方面的潜力。惩罚项在确定 SIR 算法的性能方面起着重要作用。在这项工作中,我们定量评估了惩罚项对基于统计学的惩罚加权最小二乘(PWLS)迭代重建算法性能的影响,该算法用于提高低剂量 CBCT 的图像质量。三种不同的边缘保持惩罚项,指数形式各向异性二次(AQ)惩罚(PWLS-Exp)、倒数平方形式 AQ 惩罚(PWLS-InverseSqr)和全变分惩罚(PWLS-TV),与传统各向同性二次形式惩罚(PWLS-Iso)进行了比较,同时使用计算机模拟和实验研究。PWLS 重建算法可以显著抑制低剂量 CBCT 中的噪声,并且 AQ 和 TV 基惩罚项都很好地保持了边缘。噪声-分辨率折衷测量表明,在匹配噪声水平下,PWLS-Exp 在重建高对比度物体时表现出所有三种各向异性惩罚项中最佳的空间分辨率。对于低对比度物体的重建,基于 TV 的惩罚在匹配噪声水平下具有更好的分辨率保持,优于基于 AQ 的惩罚。不同的惩罚项可用于在不同的目标对比度水平下更好地保持边缘。