Suppr超能文献

基于改进 WGAN 和混合损失函数的低剂量 CT 图像去噪

Low-Dose CT Image Denoising with Improving WGAN and Hybrid Loss Function.

机构信息

Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.

出版信息

Comput Math Methods Med. 2021 Aug 26;2021:2973108. doi: 10.1155/2021/2973108. eCollection 2021.

Abstract

The X-ray radiation from computed tomography (CT) brought us the potential risk. Simply decreasing the dose makes the CT images noisy and diagnostic performance compromised. Here, we develop a novel denoising low-dose CT image method. Our framework is based on an improved generative adversarial network coupling with the hybrid loss function, including the adversarial loss, perceptual loss, sharpness loss, and structural similarity loss. Among the loss function terms, perceptual loss and structural similarity loss are made use of to preserve textural details, and sharpness loss can make reconstruction images clear. The adversarial loss can sharp the boundary regions. The results of experiments show the proposed method can effectively remove noise and artifacts better than the state-of-the-art methods in the aspects of the visual effect, the quantitative measurements, and the texture details.

摘要

计算机断层扫描(CT)的 X 射线辐射给我们带来了潜在的风险。简单地降低剂量会使 CT 图像变得嘈杂,并影响诊断性能。在这里,我们开发了一种新的去噪低剂量 CT 图像方法。我们的框架基于改进的生成对抗网络,并结合了混合损失函数,包括对抗损失、感知损失、锐度损失和结构相似性损失。在损失函数项中,感知损失和结构相似性损失被用来保留纹理细节,锐度损失可以使重建图像清晰。对抗损失可以锐化边界区域。实验结果表明,与最先进的方法相比,该方法在视觉效果、定量测量和纹理细节方面可以更有效地去除噪声和伪影。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad46/8416402/0c8c5c291847/CMMM2021-2973108.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验