Suppr超能文献

基于非局部均值正则化的低剂量CT统计图像重建。第二部分:一种自适应方法。

Statistical image reconstruction for low-dose CT using nonlocal means-based regularization. Part II: An adaptive approach.

作者信息

Zhang Hao, Ma Jianhua, Wang Jing, Liu Yan, Han Hao, Lu Hongbing, Moore William, Liang Zhengrong

机构信息

Department of Radiology, State University of New York at Stony Brook, NY 11794, USA; Department of Biomedical Engineering, State University of New York at Stony Brook, NY 11794, USA.

Department of Radiology, State University of New York at Stony Brook, NY 11794, USA; School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China.

出版信息

Comput Med Imaging Graph. 2015 Jul;43:26-35. doi: 10.1016/j.compmedimag.2015.02.008. Epub 2015 Mar 6.

Abstract

To reduce radiation dose in X-ray computed tomography (CT) imaging, one common strategy is to lower the tube current and exposure time settings during projection data acquisition. However, this strategy would inevitably increase the projection data noise, and the resulting image by the conventional filtered back-projection (FBP) method may suffer from excessive noise and streak artifacts. The well-known edge-preserving nonlocal means (NLM) filtering can reduce the noise-induced artifacts in the FBP reconstructed image, but it sometimes cannot completely eliminate the artifacts, especially under the very low-dose circumstance when the image is severely degraded. Instead of taking NLM filtering, we proposed a NLM-regularized statistical image reconstruction scheme, which can effectively suppress the noise-induced artifacts and significantly improve the reconstructed image quality. From our previous investigation on NLM-based strategy, we noted that using a spatially invariant filtering parameter in the regularization was rarely optimal for the entire field of view (FOV). Therefore, in this study we developed a novel strategy for designing spatially variant filtering parameters which are adaptive to the local characteristics of the image to be reconstructed. This adaptive NLM-regularized statistical image reconstruction method was evaluated with low-contrast phantoms and clinical patient data to show (1) the necessity in introducing the spatial adaptivity and (2) the efficacy of the adaptivity in achieving superiority in reconstructing CT images from low-dose acquisitions.

摘要

为了降低X射线计算机断层扫描(CT)成像中的辐射剂量,一种常见策略是在投影数据采集期间降低管电流和曝光时间设置。然而,这种策略将不可避免地增加投影数据噪声,并且通过传统的滤波反投影(FBP)方法得到的图像可能会受到过多噪声和条纹伪影的影响。著名的保边缘非局部均值(NLM)滤波可以减少FBP重建图像中由噪声引起的伪影,但有时无法完全消除这些伪影,特别是在极低剂量情况下,此时图像严重退化。我们提出了一种NLM正则化统计图像重建方案,而不是采用NLM滤波,该方案可以有效抑制由噪声引起的伪影并显著提高重建图像质量。根据我们之前对基于NLM的策略的研究,我们注意到在正则化中使用空间不变的滤波参数对于整个视野(FOV)很少是最优的。因此,在本研究中,我们开发了一种新颖的策略来设计适应于待重建图像局部特征的空间可变滤波参数。使用低对比度体模和临床患者数据对这种自适应NLM正则化统计图像重建方法进行了评估,以表明(1)引入空间适应性的必要性,以及(2)这种适应性在从低剂量采集重建CT图像方面实现优势的有效性。

相似文献

2
Statistical image reconstruction for low-dose CT using nonlocal means-based regularization.基于非局部均值正则化的低剂量CT统计图像重建
Comput Med Imaging Graph. 2014 Sep;38(6):423-35. doi: 10.1016/j.compmedimag.2014.05.002. Epub 2014 May 14.

引用本文的文献

1
A low-dose CT reconstruction method using sub-pixel anisotropic diffusion.一种使用亚像素各向异性扩散的低剂量CT重建方法。
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Jan 20;45(1):162-169. doi: 10.12122/j.issn.1673-4254.2025.01.19.

本文引用的文献

2
Statistical image reconstruction for low-dose CT using nonlocal means-based regularization.基于非局部均值正则化的低剂量CT统计图像重建
Comput Med Imaging Graph. 2014 Sep;38(6):423-35. doi: 10.1016/j.compmedimag.2014.05.002. Epub 2014 May 14.
10
Low-dose X-ray CT reconstruction via dictionary learning.基于字典学习的低剂量 X 射线 CT 重建。
IEEE Trans Med Imaging. 2012 Sep;31(9):1682-97. doi: 10.1109/TMI.2012.2195669. Epub 2012 Apr 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验