Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92037-0843, USA.
Phys Med Biol. 2013 Mar 7;58(5):1447-64. doi: 10.1088/0031-9155/58/5/1447. Epub 2013 Feb 11.
The patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such a signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principal component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely the Amsterdam Shroud method, the intensity analysis method and the Fourier-transform-based phase analysis method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising technique for extracting a respiratory signal. We also identified the applicability of each existing method.
与锥形束 CT(CBCT)投影相关的患者呼吸信号对于肺癌放射治疗很重要。与监测呼吸的外部替代物相比,这种信号可以直接从 CBCT 投影中提取。在本文中,我们提出了一种新的局部主成分分析(LPCA)方法,通过区分呼吸运动引起的内容变化和机架旋转引起的内容变化,从 CBCT 投影中提取呼吸信号。通过与三种基于投影的最先进方法(即阿姆斯特丹裹尸布方法、强度分析方法和基于傅里叶变换的相位分析方法)进行比较,评估了 LPCA 方法的性能。使用来自八个患者的临床 CBCT 投影数据,在各种临床情况下进行了测试,以研究每种方法的性能。我们发现,所提出的 LPCA 方法在测试案例中表现出了最佳的整体性能,因此是一种很有前途的提取呼吸信号的技术。我们还确定了每种现有方法的适用性。