Suppr超能文献

从胸部锥形束 CT 投影中提取呼吸信号。

Extracting respiratory signals from thoracic cone beam CT projections.

机构信息

Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92037-0843, USA.

出版信息

Phys Med Biol. 2013 Mar 7;58(5):1447-64. doi: 10.1088/0031-9155/58/5/1447. Epub 2013 Feb 11.

Abstract

The patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such a signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principal component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely the Amsterdam Shroud method, the intensity analysis method and the Fourier-transform-based phase analysis method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising technique for extracting a respiratory signal. We also identified the applicability of each existing method.

摘要

与锥形束 CT(CBCT)投影相关的患者呼吸信号对于肺癌放射治疗很重要。与监测呼吸的外部替代物相比,这种信号可以直接从 CBCT 投影中提取。在本文中,我们提出了一种新的局部主成分分析(LPCA)方法,通过区分呼吸运动引起的内容变化和机架旋转引起的内容变化,从 CBCT 投影中提取呼吸信号。通过与三种基于投影的最先进方法(即阿姆斯特丹裹尸布方法、强度分析方法和基于傅里叶变换的相位分析方法)进行比较,评估了 LPCA 方法的性能。使用来自八个患者的临床 CBCT 投影数据,在各种临床情况下进行了测试,以研究每种方法的性能。我们发现,所提出的 LPCA 方法在测试案例中表现出了最佳的整体性能,因此是一种很有前途的提取呼吸信号的技术。我们还确定了每种现有方法的适用性。

相似文献

1
Extracting respiratory signals from thoracic cone beam CT projections.
Phys Med Biol. 2013 Mar 7;58(5):1447-64. doi: 10.1088/0031-9155/58/5/1447. Epub 2013 Feb 11.
2
Tumor phase recognition using cone-beam computed tomography projections and external surrogate information.
Med Phys. 2020 Oct;47(10):5077-5089. doi: 10.1002/mp.14298. Epub 2020 Aug 5.
5
Reconstruction of a high-quality volumetric image and a respiratory motion model from patient CBCT projections.
Med Phys. 2019 Aug;46(8):3627-3639. doi: 10.1002/mp.13595. Epub 2019 Jun 17.
6
Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques.
Phys Med Biol. 2016 Apr 21;61(8):3109-26. doi: 10.1088/0031-9155/61/8/3109. Epub 2016 Mar 23.
7
Investigation of gated cone-beam CT to reduce respiratory motion blurring.
Med Phys. 2013 Apr;40(4):041717. doi: 10.1118/1.4795336.

引用本文的文献

1
The edge visualization metric: Quantifying the improvement of lung SBRT target definition with 4D CBCT.
J Appl Clin Med Phys. 2025 Jul;26(7):e70114. doi: 10.1002/acm2.70114. Epub 2025 Jun 5.
3
Deformable motion compensation in interventional cone-beam CT with a context-aware learned autofocus metric.
Med Phys. 2024 Jun;51(6):4158-4180. doi: 10.1002/mp.17125. Epub 2024 May 11.
4
Development of a prediction model for target positioning by using diaphragm waveforms extracted from CBCT projection images.
J Appl Clin Med Phys. 2023 Nov;24(11):e14112. doi: 10.1002/acm2.14112. Epub 2023 Aug 6.
5
Simulation of a new respiratory phase sorting method for 4D-imaging using optical surface information towards precision radiotherapy.
Comput Biol Med. 2023 Aug;162:107073. doi: 10.1016/j.compbiomed.2023.107073. Epub 2023 May 27.
6
Reference-free learning-based similarity metric for motion compensation in cone-beam CT.
Phys Med Biol. 2022 Jun 16;67(12). doi: 10.1088/1361-6560/ac749a.
8
[Extraction of respiratory signals from chest tomosynthesis].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Jun 20;41(6):916-922. doi: 10.12122/j.issn.1673-4254.2021.06.15.

本文引用的文献

2
A novel technique for markerless, self-sorted 4D-CBCT: feasibility study.
Med Phys. 2012 Mar;39(3):1442-51. doi: 10.1118/1.3685443.
3
Mitigation of motion artifacts in CBCT of lung tumors based on tracked tumor motion during CBCT acquisition.
Phys Med Biol. 2011 Sep 7;56(17):5485-502. doi: 10.1088/0031-9155/56/17/003. Epub 2011 Aug 3.
4
An investigation of 4D cone-beam CT algorithms for slowly rotating scanners.
Med Phys. 2010 Sep;37(9):5044-53. doi: 10.1118/1.3480986.
7
Markerless lung tumor tracking and trajectory reconstruction using rotational cone-beam projections: a feasibility study.
Phys Med Biol. 2010 May 7;55(9):2505-22. doi: 10.1088/0031-9155/55/9/006. Epub 2010 Apr 14.
8
Obtaining breathing patterns from any sequential thoracic x-ray image set.
Phys Med Biol. 2009 Aug 21;54(16):4879-88. doi: 10.1088/0031-9155/54/16/003. Epub 2009 Jul 27.
10
Quality and accuracy of cone beam computed tomography gated by active breathing control.
Med Phys. 2008 Dec;35(12):5595-608. doi: 10.1118/1.3013568.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验