Dipartimento di Bioingegneria, Politecnico di Milano, Milan, Italy.
Ann Biomed Eng. 2011 Nov;39(11):2791-806. doi: 10.1007/s10439-011-0375-5. Epub 2011 Aug 4.
2D- and 3D-based innovative methods for surgical planning and simulation systems in orthopedic surgery have emerged enabling the interactive or semi-automatic identification of the clinical landmarks (CL) on the patient individual virtual bone anatomy. They enable the determination of the optimal implant sizes and positioning according to the computed CL, the visualization of the virtual bone resections and the simulation of the overall intervention prior to surgery. The virtual palpation of CL, highly dependent upon the examiner's expertise, was proved to be time consuming and to suffer from considerable inter-observer variability. In this article, we propose a fully automatic algorithmic framework that processes the pelvic bone surface, integrating surface curvature analysis, quadric fitting, recursive clustering and clinical knowledge, aiming at computing the main parameters of the acetabulum. The performance of the method was evaluated using pelvic bone surfaces reconstructed from CT scans of cadavers and subjects with pathological conditions at the hip joint. The repeatability error of the automated computation of acetabular center, size and axis parameters was less than 1 mm, 0.5 mm, and 1.5°, respectively. The computed parameters were in agreement (<1.5 mm; <0.5 mm; <3.0°) with the corresponding reference parameters manually identified in the original datasets by medical experts. According to our results, the proposed method is put forward to improve the degree of automation of image/model-based planning systems for hip surgery.
2D 和 3D 创新方法已应用于骨科手术的手术规划和模拟系统中,使临床标志(CL)能够在患者个体虚拟骨骼解剖结构上进行交互式或半自动识别。这些方法可以根据计算出的 CL 确定最佳植入物的尺寸和位置,可视化虚拟骨切除,并在手术前模拟整体干预。CL 的虚拟触诊高度依赖于检查者的专业知识,已被证明既耗时又存在相当大的观察者间变异性。在本文中,我们提出了一种全自动的算法框架,用于处理骨盆骨表面,整合表面曲率分析、二次拟合、递归聚类和临床知识,旨在计算髋臼的主要参数。该方法的性能使用从尸体和髋关节病变患者的 CT 扫描重建的骨盆骨表面进行了评估。髋臼中心、大小和轴参数的自动计算重复性误差分别小于 1mm、0.5mm 和 1.5°。计算出的参数与医学专家在原始数据集手动识别的相应参考参数一致(<1.5mm;<0.5mm;<3.0°)。根据我们的结果,提出该方法旨在提高基于图像/模型的髋关节手术规划系统的自动化程度。