Suppr超能文献

从粒子自组装到功能化亚微米蛋白质图案。

From particle self-assembly to functionalized sub-micron protein patterns.

作者信息

Blättler T M, Binkert A, Zimmermann M, Textor M, Vörös J, Reimhult E

机构信息

BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland. Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.

出版信息

Nanotechnology. 2008 Feb 20;19(7):075301. doi: 10.1088/0957-4484/19/7/075301. Epub 2008 Jan 29.

Abstract

Biologically relevant nanopatterns are useful platforms to address fundamental questions, for example, regarding protein-protein and cell-protein interactions. For the creation of nanopatterns, complex and expensive instrumentation is often needed. We present a simple but versatile patterning method using a combination of particle and subsequent molecular self-assembly to produce ordered structures in the micron and sub-micron range. Polystyrene particles were, in a first step, assembled via dip-coating or dried in a drying cell. Silicon wafers and glass slides coated with SiO(2) and a top layer of 11 nm of TiO(2) were used as substrates. Large hexagonally ordered particle monolayers were formed with high reproducibility. These were subsequently shrunk in a controlled manner by exposure to a O(2)/N(2) plasma and subsequently used as etching masks to transfer the particle pattern onto the substrate, creating TiO(2) features in an SiO(2) background. After removing the mask the oxide contrast was translated in three simple dip-and-rinse steps into a biochemical contrast of protein-coated features in an inert background. In short, alkane phosphates were first selectively adsorbed to the TiO(2) features. Then the SiO(2) background was backfilled using poly(L-lysine)-graft-poly(ethylene glycol) and finally streptavidin was adsorbed to the hydrophobic alkane phosphate SAMs, allowing subsequent binding and hybridization of biotinylated DNA.

摘要

具有生物学相关性的纳米图案是解决基本问题的有用平台,例如,关于蛋白质-蛋白质和细胞-蛋白质相互作用的问题。对于纳米图案的创建,通常需要复杂且昂贵的仪器设备。我们提出了一种简单但通用的图案化方法,该方法结合了颗粒和随后的分子自组装,以在微米和亚微米范围内产生有序结构。第一步,通过浸涂组装聚苯乙烯颗粒或在干燥池中干燥。涂有SiO₂和11纳米TiO₂顶层的硅片和载玻片用作基板。形成了具有高重现性的大六角形有序颗粒单层。随后通过暴露于O₂/N₂等离子体以可控方式使其收缩,随后用作蚀刻掩膜将颗粒图案转移到基板上,在SiO₂背景中创建TiO₂特征。去除掩膜后,通过三个简单的浸洗步骤将氧化物对比度转化为惰性背景中蛋白质涂层特征的生化对比度。简而言之,首先将链烷磷酸盐选择性吸附到TiO₂特征上。然后使用聚(L-赖氨酸)-接枝-聚(乙二醇)回填SiO₂背景,最后将链霉亲和素吸附到疏水性链烷磷酸盐自组装单分子层上,从而允许随后生物素化DNA的结合和杂交。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验