Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
Anal Bioanal Chem. 2011 Oct;401(6):1871-9. doi: 10.1007/s00216-011-5277-8. Epub 2011 Aug 5.
Transmembrane protein transporters possessing binding sites for ions, toxins, pharmaceutical drugs, and other molecules constitute excellent candidates for developing sensitive and selective biosensing devices. Their attractiveness for analytical purposes is enhanced by the intrinsic amplification capabilities shown when the binding event leads to major changes in the transportation of ions or molecules other than the analyte itself. The large-scale implementation of such transmembrane proteins in biosensing devices is limited by the difficulties encountered in inserting functional transporters into artificial bilayer lipid membranes and by the limitations in understanding and exploiting the changes induced by the interaction with the analyte for sensing purposes. Here, we show that lysenin, a pore-forming toxin extracted from earthworm Eisenia foetida, which inserts stable and large conductance channels into artificial bilayer lipid membranes, functions as a multivalent ion-sensing device. The analytical response consists of concentration and ionic-species-dependent macroscopic conductance inhibition most probably linked to a ligand-induced gating mechanism. Multivalent ion removal by chelation or precipitation restores, in most cases, the initial conductance and demonstrates reversibility. Changes in lipid bilayer membrane compositions leading to the absence of voltage-induced gating do not affect the analytical response to multivalent ions. Microscopic current analysis performed on individual lysenin channels in the presence of Cu(2+) revealed complex open-closed transitions characterized by unstable intermediate sub-conducting states. Lysenin channels provide an analytical tool with a built-in sensing mechanism for inorganic and organic multivalent ions, and the excellent stability in an artificial environment recommend lysenin as a potential candidate for single-molecule detection and analysis.
跨膜蛋白转运体具有结合离子、毒素、药物和其他分子的结合位点,是开发敏感和选择性生物传感装置的优秀候选者。当结合事件导致除分析物本身之外的离子或分子的运输发生重大变化时,它们表现出内在的放大能力,这增强了它们在分析中的吸引力。这种跨膜蛋白在生物传感装置中的大规模应用受到将功能转运体插入人工双层脂质膜的困难以及理解和利用与分析物相互作用引起的变化以进行传感的限制。在这里,我们表明,从蚯蚓 Eisenia foetida 中提取的孔形成毒素 lysenin 作为一种多价离子传感装置,可插入人工双层脂质膜中稳定且大电导的通道。分析响应由浓度和离子种类依赖性的宏观电导抑制组成,这很可能与配体诱导的门控机制有关。通过螯合或沉淀去除多价离子在大多数情况下会恢复初始电导并表现出可逆性。导致不存在电压诱导门控的脂质双层膜组成的变化不会影响多价离子的分析响应。在存在 Cu(2+)的情况下对单个 lysenin 通道进行的微观电流分析揭示了复杂的开闭转换,其特征是不稳定的中间亚导通状态。lysenin 通道为无机和有机多价离子提供了一种具有内置传感机制的分析工具,并且在人工环境中的出色稳定性使 lysenin 成为单分子检测和分析的潜在候选者。