Suppr超能文献

膜内充血对溶血素通道电压诱导门控的影响。

Intramembrane congestion effects on lysenin channel voltage-induced gating.

作者信息

Krueger Eric, Bryant Sheenah, Shrestha Nisha, Clark Tyler, Hanna Charles, Pink David, Fologea Daniel

机构信息

Department of Physics, Boise State University, Boise, ID, 83725, USA.

Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada.

出版信息

Eur Biophys J. 2016 Mar;45(2):187-94. doi: 10.1007/s00249-015-1104-z. Epub 2015 Dec 22.

Abstract

All cell membranes are packed with proteins. The ability to investigate the regulatory mechanisms of protein channels in experimental conditions mimicking their congested native environment is crucial for understanding the environmental physicochemical cues that may fundamentally contribute to their functionality in natural membranes. Here we report on investigations of the voltage-induced gating of lysenin channels in congested conditions experimentally achieved by increasing the number of channels inserted into planar lipid membranes. Typical electrophysiology measurements reveal congestion-induced changes to the voltage-induced gating, manifested as a significant reduction of the response to external voltage stimuli. Furthermore, we demonstrate a similar diminished voltage sensitivity for smaller populations of channels by reducing the amount of sphingomyelin in the membrane. Given lysenin's preference for targeting lipid rafts, this result indicates the potential role of the heterogeneous organization of the membrane in modulating channel functionality. Our work indicates that local congestion within membranes may alter the energy landscape and the kinetics of conformational changes of lysenin channels in response to voltage stimuli. This level of understanding may be extended to better characterize the role of the specific membrane environment in modulating the biological functionality of protein channels in health and disease.

摘要

所有细胞膜都富含蛋白质。在模拟蛋白质通道拥挤的天然环境的实验条件下研究其调节机制的能力,对于理解可能从根本上影响其在天然膜中功能的环境物理化学线索至关重要。在此,我们报告了通过增加插入平面脂质膜中的通道数量在实验上实现的拥挤条件下赖辛通道电压诱导门控的研究。典型的电生理测量揭示了拥挤诱导的电压诱导门控变化,表现为对外界电压刺激的反应显著降低。此外,我们通过减少膜中鞘磷脂的量,证明了较小通道群体也有类似的电压敏感性降低。鉴于赖辛对靶向脂筏的偏好,这一结果表明膜的异质组织在调节通道功能方面的潜在作用。我们的工作表明,膜内的局部拥挤可能会改变能量格局以及赖辛通道响应电压刺激时构象变化的动力学。这种理解水平可能会扩展,以更好地表征特定膜环境在调节健康和疾病状态下蛋白质通道生物学功能中的作用。

相似文献

1
Intramembrane congestion effects on lysenin channel voltage-induced gating.
Eur Biophys J. 2016 Mar;45(2):187-94. doi: 10.1007/s00249-015-1104-z. Epub 2015 Dec 22.
2
A model for the hysteresis observed in gating of lysenin channels.
Biophys Chem. 2013 Dec 31;184:126-30. doi: 10.1016/j.bpc.2013.09.001. Epub 2013 Sep 12.
3
Controlled gating of lysenin pores.
Biophys Chem. 2010 Jan;146(1):25-9. doi: 10.1016/j.bpc.2009.09.014. Epub 2009 Oct 5.
4
Bi-stability, hysteresis, and memory of voltage-gated lysenin channels.
Biochim Biophys Acta. 2011 Dec;1808(12):2933-9. doi: 10.1016/j.bbamem.2011.09.005. Epub 2011 Sep 14.
5
Purinergic control of lysenin's transport and voltage-gating properties.
Purinergic Signal. 2016 Sep;12(3):549-59. doi: 10.1007/s11302-016-9520-9. Epub 2016 Jun 18.
6
Cationic polymers inhibit the conductance of lysenin channels.
ScientificWorldJournal. 2013 Sep 28;2013:316758. doi: 10.1155/2013/316758. eCollection 2013.
7
Stochastic sensing of Angiotensin II with lysenin channels.
Sci Rep. 2017 May 26;7(1):2448. doi: 10.1038/s41598-017-02438-0.
8
An Effective Electric Dipole Model for Voltage-induced Gating Mechanism of Lysenin.
Sci Rep. 2019 Aug 7;9(1):11440. doi: 10.1038/s41598-019-47725-0.
9
Insights into the Voltage Regulation Mechanism of the Pore-Forming Toxin Lysenin.
Toxins (Basel). 2018 Aug 17;10(8):334. doi: 10.3390/toxins10080334.
10
Sphingomyelin-rich domains are sites of lysenin oligomerization: implications for raft studies.
Biochim Biophys Acta. 2010 Mar;1798(3):471-81. doi: 10.1016/j.bbamem.2009.12.004. Epub 2009 Dec 16.

引用本文的文献

1
Modulation of Voltage-Gating and Hysteresis of Lysenin Channels by Cu Ions.
Int J Mol Sci. 2023 Aug 20;24(16):12996. doi: 10.3390/ijms241612996.
2
Hypo-Osmotic Stress and Pore-Forming Toxins Adjust the Lipid Order in Sheep Red Blood Cell Membranes.
Membranes (Basel). 2023 Jun 25;13(7):620. doi: 10.3390/membranes13070620.
3
Liposomes Prevent In Vitro Hemolysis Induced by Streptolysin O and Lysenin.
Membranes (Basel). 2021 May 18;11(5):364. doi: 10.3390/membranes11050364.
4
Lysenin Channels as Sensors for Ions and Molecules.
Sensors (Basel). 2020 Oct 27;20(21):6099. doi: 10.3390/s20216099.
5
Insights into the Voltage Regulation Mechanism of the Pore-Forming Toxin Lysenin.
Toxins (Basel). 2018 Aug 17;10(8):334. doi: 10.3390/toxins10080334.
6
ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels.
J Nanobiotechnology. 2017 Dec 16;15(1):90. doi: 10.1186/s12951-017-0327-9.
7
Stochastic sensing of Angiotensin II with lysenin channels.
Sci Rep. 2017 May 26;7(1):2448. doi: 10.1038/s41598-017-02438-0.

本文引用的文献

1
Visualization of Lipid Membrane Reorganization Induced by a Pore-Forming Toxin Using High-Speed Atomic Force Microscopy.
ACS Nano. 2015 Aug 25;9(8):7960-7. doi: 10.1021/acsnano.5b01041. Epub 2015 Aug 6.
2
Real-time visualization of assembling of a sphingomyelin-specific toxin on planar lipid membranes.
Biophys J. 2013 Sep 17;105(6):1397-405. doi: 10.1016/j.bpj.2013.07.052.
3
Imaging local sphingomyelin-rich domains in the plasma membrane using specific probes and advanced microscopy.
Biochim Biophys Acta. 2014 May;1841(5):720-6. doi: 10.1016/j.bbalip.2013.07.003. Epub 2013 Jul 13.
4
Entropic tension in crowded membranes.
PLoS Comput Biol. 2012;8(3):e1002431. doi: 10.1371/journal.pcbi.1002431. Epub 2012 Mar 15.
5
Bi-stability, hysteresis, and memory of voltage-gated lysenin channels.
Biochim Biophys Acta. 2011 Dec;1808(12):2933-9. doi: 10.1016/j.bbamem.2011.09.005. Epub 2011 Sep 14.
6
Potential analytical applications of lysenin channels for detection of multivalent ions.
Anal Bioanal Chem. 2011 Oct;401(6):1871-9. doi: 10.1007/s00216-011-5277-8. Epub 2011 Aug 5.
7
Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes.
J Biol Chem. 2011 Aug 12;286(32):28544-55. doi: 10.1074/jbc.M111.255646. Epub 2011 Jun 13.
8
A gating charge transfer center in voltage sensors.
Science. 2010 Apr 2;328(5974):67-73. doi: 10.1126/science.1185954.
9
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
10
Sphingomyelin-rich domains are sites of lysenin oligomerization: implications for raft studies.
Biochim Biophys Acta. 2010 Mar;1798(3):471-81. doi: 10.1016/j.bbamem.2009.12.004. Epub 2009 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验