Ernest Gallo Clinic and Research Center, University of California, San Francisco, Department of Neurology, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA.
Neuroscience. 2011 Oct 13;193:21-33. doi: 10.1016/j.neuroscience.2011.07.055. Epub 2011 Jul 27.
Many motivated and addiction-related behaviors are sustained by activity of both dopamine D1- and D2-type receptors (D1Rs and D2Rs) as well as CB1 receptors (CB1Rs) in the nucleus accumbens (NAc). Here, we use in vitro whole-cell patch-clamp electrophysiology to describe an endocannabinoid (eCB)-dopamine receptor interaction in adult rat NAc core neurons. D1R and D2R agonists in combination enhanced firing, with no effect of a D1R or D2R agonist alone. This D1R+D2R-mediated firing increase required CB1Rs, since it was prevented by the CB1R antagonists AM251 and Rimonabant. The D1R+D2R firing increase also required phospholipase C (PLC), the major synthesis pathway for the eCB 2-arachidonoylglycerol (2-AG) and one of several pathways for anandamide. Further, inhibition of 2-AG hydrolysis with the monoglyceride lipase (MGL) inhibitor JZL184 allowed subthreshold levels of D1R+D2R receptor agonists to enhance firing, while inhibition of anandamide hydrolysis with the fatty acid amide hydrolase (FAAH) inhibitors URB597 or AM3506 did not. Filling the postsynaptic neuron with 2-AG enabled subthreshold D1R+D2R agonists to increase firing, and the 2AG+D1R+D2R increase in firing was prevented by a CB1R antagonist. Also, the metabotropic glutamate receptor 5 (mGluR5) blocker MPEP prevented the ability of JZL184 to promote subthreshold D1R+D2R enhancement of firing, while the 2-AG+D1R+D2R increase in firing was not prevented by the mGluR5 blocker, suggesting that mGluR5s acted upstream of 2-AG production. Thus, our results taken together are consistent with the hypothesis that NAc core eCBs mediate dopamine receptor (DAR) enhancement of firing, perhaps providing a cellular mechanism underlying the central role of NAc core D1Rs, D2Rs, CB1Rs, and mGluR5s during many drug-seeking behaviors.
许多动机和成瘾相关的行为是由多巴胺 D1 型和 D2 型受体(D1Rs 和 D2Rs)以及大麻素 CB1 受体(CB1Rs)在伏隔核(NAc)中的活性维持的。在这里,我们使用体外全细胞膜片钳电生理学技术来描述成年大鼠 NAc 核心神经元中的内源性大麻素(eCB)-多巴胺受体相互作用。D1R 和 D2R 激动剂联合增强了放电,而单独使用 D1R 或 D2R 激动剂则没有效果。这种 D1R+D2R 介导的放电增加需要 CB1Rs,因为它被 CB1R 拮抗剂 AM251 和 Rimonabant 所阻止。D1R+D2R 放电增加也需要磷脂酶 C(PLC),PLC 是内源性大麻素 2-花生四烯酸甘油(2-AG)的主要合成途径之一,也是大麻酰胺的几种合成途径之一。此外,用单酰基甘油脂肪酶(MGL)抑制剂 JZL184 抑制 2-AG 水解允许亚阈值水平的 D1R+D2R 受体激动剂增强放电,而用脂肪酸酰胺水解酶(FAAH)抑制剂 URB597 或 AM3506 抑制大麻酰胺水解则不能。将 2-AG 填充到突触后神经元中可以使亚阈值 D1R+D2R 激动剂增加放电,而 CB1R 拮抗剂则阻止了 2AG+D1R+D2R 对放电的增加。此外,代谢型谷氨酸受体 5(mGluR5)阻滞剂 MPEP 阻止了 JZL184 促进亚阈值 D1R+D2R 增强放电的能力,而 mGluR5 阻滞剂并不阻止 2-AG+D1R+D2R 对放电的增加,这表明 mGluR5 位于 2-AG 产生的上游。因此,我们的研究结果表明,NAc 核心区的内源性大麻素介导了多巴胺受体(DAR)对放电的增强作用,这可能为 NAc 核心区 D1Rs、D2Rs、CB1Rs 和 mGluR5s 在许多觅药行为中的核心作用提供了一种细胞机制。