Suppr超能文献

切萨皮克湾中聚球藻属和蓝藻噬菌体的丰度和分布。

Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay.

机构信息

Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt St., Baltimore, MD 21202, USA.

出版信息

Appl Environ Microbiol. 2011 Nov;77(21):7459-68. doi: 10.1128/AEM.00267-11. Epub 2011 Aug 5.

Abstract

Despite the increasing knowledge of Synechococcus spp. and their co-occurring cyanophages in oceanic and coastal water, little is known about their abundance, distribution, and interactions in the Chesapeake Bay estuarine ecosystem. A 5-year interannual survey shows that Synechococcus spp. and their phages are persistent and abundant members of Chesapeake Bay microbial communities. Synechococcus blooms (10⁶ cells ml⁻¹) were often observed in summer throughout the Bay, contributing 20 to 40% of total phytoplankton chlorophyll a. The distribution of phycoerythrin-containing (PE-rich) Synechococcus cells appeared to mostly correlate with the salinity gradient, with higher abundances at higher salinities. Cyanophages infectious to Synechococcus were also abundant (up to 6 × 10⁵ viruses ml⁻¹ by the most probable number assay) during summer months in the Bay. The covariation in abundance of Synechococcus spp. and cyanophages was evident, although the latitude of observed positive correlation varied in different years, mirroring the changing environmental conditions and therefore the host-virus interactions. The impacts of cyanophages on host Synechococcus populations also varied spatially and temporally. Higher phage-related Synechococcus mortality was observed in drought years. Virus-mediated host mortality and subsequent liberation of dissolved organic matter (DOM) may substantially influence oceanic biogeochemical processing through the microbial loop as well as the microbial carbon pump. These observations emphasize the influence of environmental gradients on natural Synechococcus spp. and their phage population dynamics in the estuarine ecosystem.

摘要

尽管人们对海洋和沿海水域中的聚球藻属及其共生的噬藻体有了越来越多的了解,但对于它们在切萨皮克湾河口生态系统中的丰度、分布和相互作用知之甚少。一项为期 5 年的年度调查表明,聚球藻属及其噬菌体是切萨皮克湾微生物群落中持久且丰富的成员。夏季整个海湾经常出现聚球藻属水华(10⁶ 个细胞 ml⁻¹),占总浮游植物叶绿素 a 的 20%至 40%。含有藻红蛋白(PE 丰富)的聚球藻细胞的分布似乎主要与盐度梯度相关,在高盐度下丰度更高。夏季噬藻体能感染聚球藻的噬菌体也很丰富(通过最可能数法检测到高达 6×10⁵ 个病毒 ml⁻¹)。聚球藻属和噬藻体的丰度变化明显,尽管在不同年份观察到的正相关的纬度不同,反映了不断变化的环境条件和因此宿主-病毒相互作用。噬藻体对宿主聚球藻种群的影响也具有时空变异性。在干旱年份观察到与噬菌体相关的聚球藻死亡率更高。病毒介导的宿主死亡和随后释放的溶解有机物质(DOM)可能通过微生物环以及微生物碳泵对海洋生物地球化学过程产生重大影响。这些观察结果强调了环境梯度对河口生态系统中自然聚球藻属及其噬菌体种群动态的影响。

相似文献

1
Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay.
Appl Environ Microbiol. 2011 Nov;77(21):7459-68. doi: 10.1128/AEM.00267-11. Epub 2011 Aug 5.
2
Selection and characterization of cyanophage resistance in marine Synechococcus strains.
Appl Environ Microbiol. 2007 Sep;73(17):5516-22. doi: 10.1128/AEM.00356-07. Epub 2007 Jul 13.
4
Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries.
Appl Environ Microbiol. 2001 Jul;67(7):3285-90. doi: 10.1128/AEM.67.7.3285-3290.2001.
5
Prevalence of highly host-specific cyanophages in the estuarine environment.
Environ Microbiol. 2008 Feb;10(2):300-12. doi: 10.1111/j.1462-2920.2007.01452.x. Epub 2007 Sep 28.
6
Isolation of cyanophages from aquatic environments.
Methods Mol Biol. 2009;501:33-42. doi: 10.1007/978-1-60327-164-6_4.
7
Quantification of diverse virus populations in the environment using the polony method.
Nat Microbiol. 2018 Jan;3(1):62-72. doi: 10.1038/s41564-017-0045-y. Epub 2017 Oct 30.
8
Distinct molecular signatures in dissolved organic matter produced by viral lysis of marine cyanobacteria.
Environ Microbiol. 2018 Aug;20(8):3001-3011. doi: 10.1111/1462-2920.14338. Epub 2018 Sep 10.

引用本文的文献

2
Picocyanobacteria in the Chesapeake Bay: isolation, diversity, and adaptation.
Mar Life Sci Technol. 2025 Jan 7;7(3):434-449. doi: 10.1007/s42995-024-00271-9. eCollection 2025 Aug.
6
Phylogenomic analysis expands the known repertoire of single-stranded DNA viruses in benthic zones of the South Indian Ocean.
ISME Commun. 2024 May 1;4(1):ycae065. doi: 10.1093/ismeco/ycae065. eCollection 2024 Jan.
7
Seasonal and spatial variations of in abundance, pigment types, and genetic diversity in a temperate semi-enclosed bay.
Front Microbiol. 2024 Jan 11;14:1322548. doi: 10.3389/fmicb.2023.1322548. eCollection 2023.
8
Spatiotemporal Shift of T4-Like Phage Community Structure in the Three Largest Estuaries of China.
Microbiol Spectr. 2023 Mar 6;11(2):e0520322. doi: 10.1128/spectrum.05203-22.

本文引用的文献

1
Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean.
Nat Rev Microbiol. 2010 Aug;8(8):593-9. doi: 10.1038/nrmicro2386. Epub 2010 Jul 5.
2
Metagenomic characterization of Chesapeake Bay virioplankton.
Appl Environ Microbiol. 2007 Dec;73(23):7629-41. doi: 10.1128/AEM.00938-07. Epub 2007 Oct 5.
3
Prevalence of highly host-specific cyanophages in the estuarine environment.
Environ Microbiol. 2008 Feb;10(2):300-12. doi: 10.1111/j.1462-2920.2007.01452.x. Epub 2007 Sep 28.
4
Autotrophic picoplankton in the tropical ocean.
Science. 1983 Jan 21;219(4582):292-5. doi: 10.1126/science.219.4582.292.
5
6
Dynamics and Distribution of Cyanophages and Their Effect on Marine Synechococcus spp.
Appl Environ Microbiol. 1994 Sep;60(9):3167-74. doi: 10.1128/aem.60.9.3167-3174.1994.
7
Resistance to co-occurring phages enables marine synechococcus communities to coexist with cyanophages abundant in seawater.
Appl Environ Microbiol. 1993 Oct;59(10):3393-9. doi: 10.1128/aem.59.10.3393-3399.1993.
9
Cyanophages infecting the oceanic cyanobacterium Prochlorococcus.
Nature. 2003 Aug 28;424(6952):1047-51. doi: 10.1038/nature01929.
10
The genome of a motile marine Synechococcus.
Nature. 2003 Aug 28;424(6952):1037-42. doi: 10.1038/nature01943. Epub 2003 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验