Suppr超能文献

重复分数测量数据的半参数贝叶斯推断

Semiparametric Bayesian inference for repeated fractional measurement data.

作者信息

Yang Ying, Müller Peter, Rosner Gary L

机构信息

Bristol-Myers Squibb Company, Plainsboro, NJ 08536, U.S.A.

出版信息

Chil J Stat. 2010 Apr 1;1(1):59-74.

Abstract

We discuss inference for repeated fractional data, with outcomes between 0 to 1, including positive probability masses on 0 and 1. The point masses at the boundaries prevent the routine use of logit and other commonly used transformations of (0, 1) data. We introduce a model augmentation with latent variables that allow for the desired positive probability at 0 and 1 in the model. A linear mixed effect model is imposed on the latent variables. We propose a Bayesian semiparametric model for the random effects distribution. Specifically, we use a Polya tree prior for the unknown random effects distribution. The proposed model can capture possible multimodality and skewness of random effect distribution. We discuss implementation of posterior inference by Markov chain Monte Carlo simulation. The proposed model is illustrated by a simulation study and a cancer study in dogs.

摘要

我们讨论了重复分数数据的推断问题,其结果介于0到1之间,包括在0和1处的正概率质量。边界处的点质量阻碍了对数几率和其他常用的(0, 1)数据变换的常规使用。我们引入了一种带有潜在变量的模型增强方法,该方法允许模型在0和1处具有所需的正概率。对潜在变量施加线性混合效应模型。我们为随机效应分布提出了一个贝叶斯半参数模型。具体来说,我们对未知的随机效应分布使用波利亚树先验。所提出的模型可以捕捉随机效应分布可能的多峰性和偏态性。我们讨论了通过马尔可夫链蒙特卡罗模拟进行后验推断的实现。通过模拟研究和犬类癌症研究对所提出的模型进行了说明。

相似文献

2
Semiparametric bayesian inference for multilevel repeated measurement data.
Biometrics. 2007 Mar;63(1):280-9. doi: 10.1111/j.1541-0420.2006.00668.x.
4
A mixed-effect model for positive responses augmented by zeros.
Stat Med. 2015 May 10;34(10):1761-78. doi: 10.1002/sim.6450. Epub 2015 Feb 11.
5
Regression analysis using dependent Polya trees.
Stat Med. 2013 Nov 30;32(27):4679-95. doi: 10.1002/sim.5898. Epub 2013 Jul 9.
6
Bayesian analysis of transformation latent variable models with multivariate censored data.
Stat Methods Med Res. 2016 Oct;25(5):2337-2358. doi: 10.1177/0962280214522786. Epub 2014 Feb 17.
7
A comparison of computational algorithms for the Bayesian analysis of clinical trials.
Clin Trials. 2024 Dec;21(6):689-700. doi: 10.1177/17407745241247334. Epub 2024 May 16.
8
9
A Semiparametric Bayesian Approach to Multivariate Longitudinal Data.
Aust N Z J Stat. 2010 Sep;52(3):275-288. doi: 10.1111/j.1467-842X.2010.00581.x.
10
Bayesian inference for latent biologic structure with determinantal point processes (DPP).
Biometrics. 2016 Sep;72(3):955-64. doi: 10.1111/biom.12482. Epub 2016 Feb 12.

引用本文的文献

1
Rubbery Polya Tree.
Scand Stat Theory Appl. 2012 Mar;39(1). doi: 10.1111/j.1467-9469.2011.00761.x.

本文引用的文献

1
A Bayesian semiparametric accelerated failure time model.
Biometrics. 1999 Jun;55(2):477-83. doi: 10.1111/j.0006-341x.1999.00477.x.
5
Random-effects models for longitudinal data.
Biometrics. 1982 Dec;38(4):963-74.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验