Yang Ying, Müller Peter, Rosner Gary L
Bristol-Myers Squibb Company, Plainsboro, NJ 08536, U.S.A.
Chil J Stat. 2010 Apr 1;1(1):59-74.
We discuss inference for repeated fractional data, with outcomes between 0 to 1, including positive probability masses on 0 and 1. The point masses at the boundaries prevent the routine use of logit and other commonly used transformations of (0, 1) data. We introduce a model augmentation with latent variables that allow for the desired positive probability at 0 and 1 in the model. A linear mixed effect model is imposed on the latent variables. We propose a Bayesian semiparametric model for the random effects distribution. Specifically, we use a Polya tree prior for the unknown random effects distribution. The proposed model can capture possible multimodality and skewness of random effect distribution. We discuss implementation of posterior inference by Markov chain Monte Carlo simulation. The proposed model is illustrated by a simulation study and a cancer study in dogs.
我们讨论了重复分数数据的推断问题,其结果介于0到1之间,包括在0和1处的正概率质量。边界处的点质量阻碍了对数几率和其他常用的(0, 1)数据变换的常规使用。我们引入了一种带有潜在变量的模型增强方法,该方法允许模型在0和1处具有所需的正概率。对潜在变量施加线性混合效应模型。我们为随机效应分布提出了一个贝叶斯半参数模型。具体来说,我们对未知的随机效应分布使用波利亚树先验。所提出的模型可以捕捉随机效应分布可能的多峰性和偏态性。我们讨论了通过马尔可夫链蒙特卡罗模拟进行后验推断的实现。通过模拟研究和犬类癌症研究对所提出的模型进行了说明。