Rodrigues-Motta Mariana, Galvis Soto Diana Milena, Lachos Victor H, Vilca Filidor, Baltar Valéria Troncoso, Junior Eliseu Verly, Fisberg Regina Mara, Lobo Marchioni Dirce Maria
Department of Statistics, State University of Campinas, São Paulo, Brazil.
Stat Med. 2015 May 10;34(10):1761-78. doi: 10.1002/sim.6450. Epub 2015 Feb 11.
In this research article, we propose a class of models for positive and zero responses by means of a zero-augmented mixed regression model. Under this class, we are particularly interested in studying positive responses whose distribution accommodates skewness. At the same time, responses can be zero, and therefore, we justify the use of a zero-augmented mixture model. We model the mean of the positive response in a logarithmic scale and the mixture probability in a logit scale, both as a function of fixed and random effects. Moreover, the random effects link the two random components through their joint distribution and incorporate within-subject correlation because of the repeated measurements and between-subject heterogeneity. A Markov chain Monte Carlo algorithm is tailored to obtain Bayesian posterior distributions of the unknown quantities of interest, and Bayesian case-deletion influence diagnostics based on the q-divergence measure is performed. We apply the proposed method to a dataset from a 24 hour dietary recall study conducted in the city of São Paulo and present a simulation study to evaluate the performance of the proposed methods.
在这篇研究文章中,我们借助零膨胀混合回归模型提出了一类用于正响应和零响应的模型。在这类模型下,我们特别关注研究分布具有偏度的正响应。同时,响应可能为零,因此,我们论证了使用零膨胀混合模型的合理性。我们将正响应的均值建模为对数尺度,将混合概率建模为对数单位尺度,二者均作为固定效应和随机效应的函数。此外,随机效应通过其联合分布将两个随机成分联系起来,并由于重复测量和个体间异质性纳入个体内相关性。定制了一个马尔可夫链蒙特卡罗算法来获得感兴趣的未知量的贝叶斯后验分布,并基于q散度测度进行贝叶斯案例删除影响诊断。我们将所提出的方法应用于在圣保罗市进行的一项24小时饮食回顾研究的数据集,并进行了一项模拟研究以评估所提出方法的性能。