Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA.
J Chem Phys. 2011 Aug 7;135(5):054906. doi: 10.1063/1.3617432.
A theory describing vibronic coupling in direct band gap, one-dimensional semiconductors is developed to account for the photophysical properties of isolated, defect-free conjugated polymers. A Holstein-like Hamiltonian represented in a multi-particle basis set is used to evaluate absorption and emission due to Wannier-Mott excitons. The photophysical properties of such quantum wires are shown to strongly resemble those of Frenkel exciton J-aggregates. The 1(1)B(u) exciton coherence length and effective mass are readily determined from the ratio of the 0-0 and 0-1 line strengths, I(0 - 0)/I(0 - 1), in the photoluminescence spectrum. I(0 - 0)/I(0 - 1) is shown to follow a T(-1/2) dependence, in an excellent agreement with experiments on the red-phase of polydiacteylene.
发展了一种用于描述直接带隙一维半导体中振子耦合的理论,以解释孤立、无缺陷的共轭聚合物的光物理性质。采用多粒子基组表示的类 Holstein 哈密顿量来评估由于 Wannier-Mott 激子引起的吸收和发射。此类量子线的光物理性质与 Frenkel 激子 J-聚集体非常相似。通过比较光致发光谱中的 0-0 和 0-1 线强度 I(0 - 0)/I(0 - 1),可以很容易地确定 1(1)B(u)激子相干长度和有效质量。结果表明,I(0 - 0)/I(0 - 1)与实验结果非常吻合,遵循 T(-1/2)的依赖性,这与聚二乙炔红相的实验结果一致。