Suppr超能文献

链弯曲对共轭聚合物光物理性质的影响。

The effect of chain bending on the photophysical properties of conjugated polymers.

作者信息

Hestand Nicholas J, Spano Frank C

机构信息

Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States.

出版信息

J Phys Chem B. 2014 Jul 17;118(28):8352-63. doi: 10.1021/jp501857n. Epub 2014 Apr 29.

Abstract

The impact of chain bending on the photophysical properties of emissive conjugated polymers (CPs) is studied theoretically using Holstein-style Hamiltonians which treat vibronic coupling involving the ubiquitous vinyl/ring stretching mode nonadiabatically. The photophysical impact of chain bending is already evident at the level of an effective Frenkel Hamiltonian, where the positive exciton band curvature in CPs translates to negative excitonic coupling between monomeric units, as in J-aggregates. It is shown that the absorption and photoluminescence (PL) spectral line shapes respond very differently to chain bending. The misalignment of monomeric transition dipole moments with bending selectively attenuates the 0-0 PL peak intensity while leaving the 0-1 intensity practically unchanged, a property which is ultimately due to the uniquely coherent nature of the 0-0 peak. Hence, the 0-0/0-1 PL ratio, as well as the radiative decay rate, decrease with chain bending, effects that are more pronounced at lower temperatures where exciton coherence extends over a larger portion of the chain. Increasing temperature and/or static disorder reduces the exciton coherence number, Ncoh, thereby reducing the sensitivity to bending. In marked contrast, the absorption vibronic progression is far less sensitive to morphological changes, even at low temperatures, and is mainly responsive to the exciton bandwidth. The above results also hold when using a more accurate 1D semiconductor Hamiltonian which allows for electron-hole separation along the CP chain. The findings may suggest unique ways of controlling the radiative properties of conjugated polymer chains useful in applications such as organic light emitting diodes (OLEDs) and low-temperature sensors.

摘要

利用荷斯坦型哈密顿量对链弯曲对发光共轭聚合物(CPs)光物理性质的影响进行了理论研究,该哈密顿量非绝热地处理涉及普遍存在的乙烯基/环拉伸模式的振子耦合。在有效的弗伦克尔哈密顿量水平上,链弯曲的光物理影响已经很明显,其中CPs中的正激子带曲率转化为单体单元之间的负激子耦合,就像在J聚集体中一样。结果表明,吸收光谱和光致发光(PL)光谱线形状对链弯曲的响应非常不同。单体跃迁偶极矩与弯曲的不对准选择性地衰减了0-0 PL峰强度,而0-1强度实际上保持不变,这一特性最终归因于0-0峰独特的相干性质。因此,0-0/0-1 PL比值以及辐射衰减率随链弯曲而降低,在较低温度下,激子相干延伸到链的更大一部分,这种影响更为明显。温度升高和/或静态无序会降低激子相干数Ncoh,从而降低对弯曲的敏感性。与之形成鲜明对比的是,吸收振子跃迁即使在低温下对形态变化也不太敏感,主要对激子带宽有响应。当使用更精确的一维半导体哈密顿量时,上述结果仍然成立,该哈密顿量允许沿CP链进行电子-空穴分离。这些发现可能为控制共轭聚合物链的辐射性质提供独特的方法,这在有机发光二极管(OLED)和低温传感器等应用中很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验