Suppr超能文献

弯曲的纳米线结构与激子结合能。

Curved nanowire structures and exciton binding energies.

作者信息

Willatzen M, Lassen B

机构信息

Mads Clausen Institute for Product Innovation, University of Southern Denmark, Alsion 2, DK-6400 Sønderborg, Denmark.

出版信息

J Phys Condens Matter. 2009 May 20;21(20):205302. doi: 10.1088/0953-8984/21/20/205302. Epub 2009 Apr 24.

Abstract

Growth of quantum-confined semiconductor structures is a complicated process that may lead to imperfect and complex shapes as well as geometrical nonuniformities when comparing a large number of intended identical structures. On the other hand, the possibility of tuning the shape and size of nanostructures allows for extra optimization degrees when considering electronic and optical properties in various applications. This calls for a better understanding of size and shape effects. In the present work, we express the one-band Schrödinger equation in curved coordinates convenient for determining eigenstates of curved quantum-wire and quantum-dash structures with large aspect ratios. Firstly, we use this formulation to solve the problem of single-electron and single-hole states in curved nanowires. Secondly, exciton states for the curved quantum-wire Hamiltonian problem are found by expanding exciton eigenstates on a product of single-particle eigenstates. A simple result is found for the Coulomb matrix elements of an arbitrarily curved structure as long as the radius-of-curvature is much larger than the cross-sectional dimensions. We use this general result to compute the groundstate exciton binding energy of a bent nanowire as a function of the bending radius-of-curvature. It is demonstrated that the groundstate exciton binding energy increases by 40 meV as the radius-of-curvature changes from 20 to 2 nm while keeping the total length (and volume) of the nanowire constant.

摘要

量子限制半导体结构的生长是一个复杂的过程,在比较大量预期相同的结构时,可能会导致形状不完美且复杂,以及几何不均匀性。另一方面,在考虑各种应用中的电子和光学性质时,调整纳米结构形状和尺寸的可能性提供了额外的优化维度。这就需要更好地理解尺寸和形状效应。在本工作中,我们在便于确定具有大纵横比的弯曲量子线和量子点结构本征态的曲线坐标系中表示单带薛定谔方程。首先,我们用这种公式来解决弯曲纳米线中的单电子和单空穴态问题。其次,通过在单粒子本征态的乘积上展开激子本征态,找到弯曲量子线哈密顿问题的激子态。只要曲率半径远大于横截面尺寸,对于任意弯曲结构的库仑矩阵元就能得到一个简单的结果。我们用这个一般结果来计算弯曲纳米线的基态激子结合能作为曲率半径的函数。结果表明,当曲率半径从20纳米变化到2纳米,同时保持纳米线的总长度(和体积)不变时,基态激子结合能增加40毫电子伏特。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验