Suppr超能文献

基于 MRI 的全身 PET/MRI 衰减校正:分割和图谱基方法的定量评估。

MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods.

机构信息

Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany.

出版信息

J Nucl Med. 2011 Sep;52(9):1392-9. doi: 10.2967/jnumed.110.078949. Epub 2011 Aug 9.

Abstract

UNLABELLED

PET/MRI is an emerging dual-modality imaging technology that requires new approaches to PET attenuation correction (AC). We assessed 2 algorithms for whole-body MRI-based AC (MRAC): a basic MR image segmentation algorithm and a method based on atlas registration and pattern recognition (AT&PR).

METHODS

Eleven patients each underwent a whole-body PET/CT study and a separate multibed whole-body MRI study. The MR image segmentation algorithm uses a combination of image thresholds, Dixon fat-water segmentation, and component analysis to detect the lungs. MR images are segmented into 5 tissue classes (not including bone), and each class is assigned a default linear attenuation value. The AT&PR algorithm uses a database of previously aligned pairs of MRI/CT image volumes. For each patient, these pairs are registered to the patient MRI volume, and machine-learning techniques are used to predict attenuation values on a continuous scale. MRAC methods are compared via the quantitative analysis of AC PET images using volumes of interest in normal organs and on lesions. We assume the PET/CT values after CT-based AC to be the reference standard.

RESULTS

In regions of normal physiologic uptake, the average error of the mean standardized uptake value was 14.1% ± 10.2% and 7.7% ± 8.4% for the segmentation and the AT&PR methods, respectively. Lesion-based errors were 7.5% ± 7.9% for the segmentation method and 5.7% ± 4.7% for the AT&PR method.

CONCLUSION

The MRAC method using AT&PR provided better overall PET quantification accuracy than the basic MR image segmentation approach. This better quantification was due to the significantly reduced volume of errors made regarding volumes of interest within or near bones and the slightly reduced volume of errors made regarding areas outside the lungs.

摘要

目的

正电子发射断层扫描/磁共振成像(PET/MRI)是一种新兴的双模成像技术,需要新的方法来进行正电子发射断层扫描衰减校正(AC)。我们评估了两种基于全身 MRI 的 AC 算法:一种基本的 MRI 图像分割算法和一种基于图谱配准和模式识别的方法(AT&PR)。

方法

11 例患者均接受了全身 PET/CT 检查和单独的多床位全身 MRI 检查。MR 图像分割算法使用图像阈值、Dixon 水脂分割和成分分析的组合来检测肺部。MR 图像被分割成 5 种组织类别(不包括骨骼),并为每个类别分配一个默认的线性衰减值。AT&PR 算法使用先前配准的 MRI/CT 图像体积对的数据库。对于每个患者,这些对都被配准到患者的 MRI 体积,然后使用机器学习技术在连续尺度上预测衰减值。通过对正常器官和病变的感兴趣体积的 AC PET 图像进行定量分析,比较了 AC 方法。我们假设 CT 基于 AC 的 PET/CT 值为参考标准。

结果

在正常生理摄取区域,平均标准化摄取值的平均误差分别为 14.1%±10.2%和 7.7%±8.4%,分别为分割和 AT&PR 方法。基于病变的误差分别为分割方法的 7.5%±7.9%和 AT&PR 方法的 5.7%±4.7%。

结论

使用 AT&PR 的 MRAC 方法提供了比基本的 MR 图像分割方法更好的整体 PET 量化准确性。这种更好的量化是由于在骨骼内或附近的感兴趣区域以及在肺外区域的误差体积显著减少,以及略微减少的误差体积导致的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验