Suppr超能文献

基于磁共振成像的脑正电子发射断层扫描/磁共振成像中飞行时间技术的衰减校正的定量分析。

Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva Neuroscience Centre, University of Geneva, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, The Netherlands.

出版信息

Neuroimage. 2016 Apr 15;130:123-133. doi: 10.1016/j.neuroimage.2016.01.060. Epub 2016 Feb 4.

Abstract

PURPOSE

In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI.

MATERIALS AND METHODS

Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images.

RESULTS

Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on Dice similarity coefficient (DSC) showed that MLAA-AC and atlas-AC resulted in DSC mean values of 0.79 and 0.92, respectively, in all patients. The MLAA-AC and atlas-AC methods predicted mean linear attenuation coefficients of 0.107 and 0.134 cm(-1), respectively, for the skull compared to reference CTAC mean value of 0.138cm(-1). The evaluation of the relative change in tracer uptake within 32 distinct regions of the brain with respect to CTAC PET images showed that the 3-class MRAC, MLAA-AC and atlas-AC methods resulted in quantification errors of -16.2 ± 3.6%, -13.3 ± 3.3% and 1.0 ± 3.4%, respectively. Linear regression and Bland-Altman concordance plots showed that both 3-class MRAC and MLAA-AC methods result in a significant systematic bias in PET tracer uptake, while the atlas-AC method results in a negligible bias.

CONCLUSION

The standard 3-class MRAC method significantly underestimated cerebral PET tracer uptake. While current state-of-the-art MLAA-AC methods look promising, they were unable to noticeably reduce quantification errors in the context of brain imaging. Conversely, the proposed atlas-AC method provided the most accurate attenuation maps, and thus the lowest quantification bias.

摘要

目的

在定量 PET/MR 成像中,需要从 MR 图像中得出准确的衰减图,这对 PET 数据的衰减校正(AC)提出了很高的要求。已经开发了许多用于 MRI 引导衰减校正的策略,它们在不同程度上取得了成功。在这项工作中,我们比较了三种通用 AC 方法的定量性能,包括标准的基于 3 类 MR 分割、基于先进图谱配准和基于发射的方法,用于脑时间飞行(TOF)PET/MRI。

材料与方法

本比较研究纳入了 14 名因诊断性 MRI 和(18)F-FDG PET/CT 脑扫描而就诊的患者。对于每个研究,使用从 CT 为基础的 AC(CTAC)得出的四种不同衰减图对 PET 图像进行重建,作为参考,标准的 3 类 MR 分割、图谱配准和基于发射的 AC 方法。为了生成 3 类衰减图,将 T1 加权 MRI 图像分割成背景空气、脂肪和软组织类,然后分别为每类分配恒定的线性衰减系数 0、0.0864 和 0.0975 cm-1。为了生成伪 CT,我们开发了一种基于局部加权融合图谱的基于形态相似性的鲁棒图谱配准方法。我们最近提出的基于 TOF 发射数据的 MRI 引导最大似然重建活性和衰减(MLAA)算法用于从 TOF 发射数据中估计衰减图。客观地根据参考 CTAC 图和 CTAC-PET 图像评估不同 AC 算法在预测骨骼和定量 PET 示踪剂摄取方面的性能。

结果

定性评估表明,MLAA-AC 方法可以稀疏地估计骨骼,并准确地区分它们与气腔。发现图谱 AC 方法可以准确地预测骨骼,但其对气腔的定义存在可变误差。基于 Dice 相似系数(DSC)的骨骼提取准确性评估表明,MLAA-AC 和图谱 AC 在所有患者中的平均 DSC 值分别为 0.79 和 0.92。MLAA-AC 和图谱 AC 方法分别预测颅骨的平均线性衰减系数为 0.107 和 0.134 cm-1,而参考 CTAC 的平均线性衰减系数为 0.138cm-1。对 32 个不同脑区相对于 CTAC PET 图像的示踪剂摄取的相对变化进行评估表明,3 类 MRAC、MLAA-AC 和图谱 AC 方法分别导致示踪剂摄取的定量误差为-16.2±3.6%、-13.3±3.3%和 1.0±3.4%。线性回归和 Bland-Altman 一致性图表明,3 类 MRAC 和 MLAA-AC 方法均导致 PET 示踪剂摄取存在显著的系统偏差,而图谱 AC 方法导致的偏差可忽略不计。

结论

标准的 3 类 MRAC 方法显著低估了脑 PET 示踪剂摄取。虽然目前最先进的 MLAA-AC 方法看起来很有前途,但它们在脑成像方面仍无法明显降低定量误差。相反,所提出的图谱 AC 方法提供了最准确的衰减图,因此具有最低的定量偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验