Peng Mingying, Zollfrank Cordt, Wondraczek Lothar
Lehrstuhl für Glas und Keramik, WW3, Friedrich Alexander Universität Erlangen-Nürnberg, Martensstrasse 5, D-91058 Erlangen, Germany.
J Phys Condens Matter. 2009 Jul 15;21(28):285106. doi: 10.1088/0953-8984/21/28/285106. Epub 2009 Jun 19.
Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi(2)O(3) into elementary Bi. Darkening of bismuthate glass melted at 1300 °C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi(3+) is formed. By comparing with atomic spectral data, absorption bands at ∼320 , ∼500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi(0) transitions [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], respectively, and broadband NIR emission is assigned to the transition [Formula: see text].
在近红外(NIR)光谱范围内具有宽带光致发光的铋掺杂玻璃目前因在电信、广泛可调谐光纤激光器和光谱转换器中的潜在应用而受到广泛关注。然而,近红外发射的起源仍存在争议。在此,我们报道了铋酸盐玻璃的近红外吸收和发射特性及其对熔化温度的依赖性。结果表明,近红外发射与铋掺杂玻璃中的发射源自相同的中心。铋酸盐玻璃的吸收和近红外发射对熔化温度的依赖性被解释为Bi₂O₃热分解为单质Bi。在1300°C熔化的铋酸盐玻璃变黑是由于Bi原子的团聚。通过透射电子显微镜、高分辨率能量色散X射线光谱和元素分布图确认了Bi纳米颗粒的存在。通过向玻璃中添加氧化锑作为氧化剂,可以消除近红外发射中心并形成Bi³⁺。通过与原子光谱数据比较,在铋掺杂玻璃中观察到的约320、约500、700、800和1000nm处的吸收带分别归属于Bi(0)跃迁[公式:见正文]、[公式:见正文]、[公式:见正文]、[公式:见正文]和[公式:见正文],宽带近红外发射归属于跃迁[公式:见正文]。