Rathore K S, Saxena N S
Semi-conductor and Polymer Science Laboratory, 5-6, Vigyan Bhawan, University of Rajasthan, Jaipur-302004, India.
J Phys Condens Matter. 2009 Aug 19;21(33):335102. doi: 10.1088/0953-8984/21/33/335102. Epub 2009 Jul 8.
Differential scanning calorimetry (DSC) has been employed at five different heating rates to investigate the glass-crystal transformation in Ge(1-x)Sn(x)Se(2.5) (0≤x≤0.5) glasses under non-isothermal conditions. From the dependence of glass transition temperature on the heating rate 'α' , the activation energy of glass transition, E(t), has been calculated on the basis of the Kissinger model. Results indicate that T(g) and E(t) attain their minimum values at 0.3 at. wt% of Sn. The crystallization process has been investigated using Kissinger, Matusita, Augis and Bennett, and Gao and Wang models. Various kinetic parameters such as activation energy of crystallization, E(c), Avrami exponent (n), dimensionality of growth (m), frequency factor (K(o)) and crystallization rate factor (K) have been calculated for a better understanding of the growth mechanism. The obtained kinetic parameters indicate that stability of glassy samples decreases upto 0.3 at. wt% of Sn and increases on further addition of Sn.
采用差示扫描量热法(DSC)在五种不同的加热速率下,研究了非等温条件下Ge(1-x)Sn(x)Se(2.5)(0≤x≤0.5)玻璃中的玻璃-晶体转变。根据玻璃化转变温度对加热速率“α”的依赖性,基于基辛格模型计算了玻璃化转变的活化能E(t)。结果表明,当Sn含量为0.3原子百分比时,T(g)和E(t)达到最小值。利用基辛格、松田、奥吉斯和贝内特以及高和王模型研究了结晶过程。为了更好地理解生长机制,计算了各种动力学参数如结晶活化能E(c)、阿弗拉米指数(n)、生长维数(m)、频率因子(K(o))和结晶速率因子(K)。所获得的动力学参数表明,玻璃态样品的稳定性在Sn含量达到0.3原子百分比之前降低,而在进一步添加Sn后增加。