Mercado Angel E, He Xuezhong, Xu Weijie, Jabbari Esmaiel
Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina, SC 29208, Columbia.
Nanotechnology. 2008 Aug 13;19(32):325609. doi: 10.1088/0957-4484/19/32/325609. Epub 2008 Jul 4.
Lactide-co-glycolide-based functionalized nanoparticles (NPs), because of their high surface areas for conjugation and biodegradability, are attractive as carriers for stabilization and sustained delivery of therapeutic agents and protein drugs. The objective of this work was to compare the release characteristics of model molecules encapsulated in NPs produced from poly(lactide-co-glycolide fumarate) (PLGF) macromer with those of model molecules conjugated to NPs produced from succinimide (NHS)-terminated PLGF-NHS macromer. Poly(lactide fumarate) (PLAF), PLGF and poly(lactide-co-ethylene oxide fumarate) (PLEOF) macromers were synthesized by condensation polymerization. The hydroxyl end-groups of PLAF and PLGF macromers were reacted with N,N(')-disuccinimidyl carbonate (DSC) to produce succinimide-terminated PLAF-NHS and PLGF-NHS macromers. The macromers were self-assembled by dialysis to form NPs. The amphiphilic PLEOF macromer was used as the surfactant to stabilize the NPs in the process of self-assembly. 1-(2-pyridylazo)-2-naphthol (PAN) was used as a model small molecule for encapsulation in PLAF or PLGF NPs and bovine serum albumin (BSA) was used as a model protein for conjugation to PLAF-NHS and PLGF-NHS NPs. The profile of release of the encapsulated PAN from PLAF and PLGF NPs was non-linear and consisted of a burst release followed by a period of sustained release. The release profile for BSA, conjugated to PLAF-NHS and PLGF-NHS NPs, was linear up to complete degradation of the NPs. PLGF and PLAF NPs degraded in 15 and 28 days, respectively, while PLGF-NHS and PLAF-NHS NPs degraded in 25 and 38 days, which demonstrated that the release was dominated by erosion of the matrix. PLAF-NHS and PLGF-NHS NPs are potentially useful as carriers for sustained in situ release of protein drugs.
基于丙交酯-乙交酯的功能化纳米颗粒(NPs),由于其具有用于共轭的高表面积和生物可降解性,作为治疗剂和蛋白质药物的稳定化及持续递送载体具有吸引力。本研究的目的是比较封装在由聚(富马酸丙交酯-乙交酯)(PLGF)大分子单体制备的纳米颗粒中的模型分子与共轭到由琥珀酰亚胺(NHS)封端的PLGF-NHS大分子单体制备的纳米颗粒中的模型分子的释放特性。通过缩聚反应合成了聚(富马酸丙交酯)(PLAF)、PLGF和聚(富马酸丙交酯-环氧乙烷)(PLEOF)大分子单体。PLAF和PLGF大分子单体的羟基端基与N,N'-二琥珀酰亚胺基碳酸酯(DSC)反应,生成琥珀酰亚胺封端的PLAF-NHS和PLGF-NHS大分子单体。通过透析使大分子单体自组装形成纳米颗粒。两亲性PLEOF大分子单体用作表面活性剂,以在自组装过程中稳定纳米颗粒。1-(2-吡啶偶氮)-2-萘酚(PAN)用作封装在PLAF或PLGF纳米颗粒中的模型小分子,牛血清白蛋白(BSA)用作共轭到PLAF-NHS和PLGF-NHS纳米颗粒上的模型蛋白质。封装在PLAF和PLGF纳米颗粒中的PAN的释放曲线是非线性的,包括一个突释阶段,随后是一段持续释放期。共轭到PLAF-NHS和PLGF-NHS纳米颗粒上的BSA的释放曲线在纳米颗粒完全降解之前是线性的。PLGF和PLAF纳米颗粒分别在15天和28天内降解,而PLGF-NHS和PLAF-NHS纳米颗粒在25天和38天内降解,这表明释放主要由基质的侵蚀主导。PLAF-NHS和PLGF-NHS纳米颗粒作为蛋白质药物原位持续释放的载体具有潜在用途。