Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.
PLoS Genet. 2011 Jul;7(7):e1002181. doi: 10.1371/journal.pgen.1002181. Epub 2011 Jul 28.
Multidrug-resistant bacteria arise mostly by the accumulation of plasmids and chromosomal mutations. Typically, these resistant determinants are costly to the bacterial cell. Yet, recently, it has been found that, in Escherichia coli bacterial cells, a mutation conferring resistance to an antibiotic can be advantageous to the bacterial cell if another antibiotic-resistance mutation is already present, a phenomenon called sign epistasis. Here we study the interaction between antibiotic-resistance chromosomal mutations and conjugative (i.e., self-transmissible) plasmids and find many cases of sign epistasis (40%)--including one of reciprocal sign epistasis where the strain carrying both resistance determinants is fitter than the two strains carrying only one of the determinants. This implies that the acquisition of an additional resistance plasmid or of a resistance mutation often increases the fitness of a bacterial strain already resistant to antibiotics. We further show that there is an overall antagonistic interaction between mutations and plasmids (52%). These results further complicate expectations of resistance reversal by interdiction of antibiotic use.
多药耐药菌主要通过质粒和染色体突变的积累而产生。通常,这些耐药决定因素对细菌细胞来说是有代价的。然而,最近发现,在大肠杆菌细菌细胞中,如果另一个抗生素耐药突变已经存在,赋予抗生素耐药性的突变对细菌细胞可能是有利的,这种现象称为符号上位性。在这里,我们研究了抗生素耐药性染色体突变与可接合(即自我可传递)质粒之间的相互作用,并发现了许多符号上位性的情况(40%)--包括一种相互符号上位性,即携带两种耐药决定因素的菌株比仅携带一种决定因素的两种菌株更适合。这意味着获得额外的耐药质粒或耐药突变通常会增加对抗生素已经耐药的细菌菌株的适应性。我们进一步表明,突变和质粒之间存在总体拮抗相互作用(52%)。这些结果进一步增加了通过禁止使用抗生素来逆转耐药性的预期的复杂性。