Suppr超能文献

新算法提高大麦共识 SNP 图谱的精细结构。

New algorithm improves fine structure of the barley consensus SNP map.

机构信息

Department of Crop and Soil Sciences, Washington State University, 16650 State Route 536, Mount Vernon, WA 98273, USA.

出版信息

BMC Genomics. 2011 Aug 10;12:407. doi: 10.1186/1471-2164-12-407.

Abstract

BACKGROUND

The need to integrate information from multiple linkage maps is a long-standing problem in genetics. One way to visualize the complex ordinal relationships is with a directed graph, where each vertex in the graph is a bin of markers. When there are no ordering conflicts between the linkage maps, the result is a directed acyclic graph, or DAG, which can then be linearized to produce a consensus map.

RESULTS

New algorithms for the simplification and linearization of consensus graphs have been implemented as a package for the R computing environment called DAGGER. The simplified consensus graphs produced by DAGGER exactly capture the ordinal relationships present in a series of linkage maps. Using either linear or quadratic programming, DAGGER generates a consensus map with minimum error relative to the linkage maps while remaining ordinally consistent with them. Both linearization methods produce consensus maps that are compressed relative to the mean of the linkage maps. After rescaling, however, the consensus maps had higher accuracy (and higher marker density) than the individual linkage maps in genetic simulations. When applied to four barley linkage maps genotyped at nearly 3000 SNP markers, DAGGER produced a consensus map with improved fine structure compared to the existing barley consensus SNP map. The root-mean-squared error between the linkage maps and the DAGGER map was 0.82 cM per marker interval compared to 2.28 cM for the existing consensus map. Examination of the barley hardness locus at the 5HS telomere, for which there is a physical map, confirmed that the DAGGER output was more accurate for fine structure analysis.

CONCLUSIONS

The R package DAGGER is an effective, freely available resource for integrating the information from a set of consistent linkage maps.

摘要

背景

整合来自多个连锁图谱信息是遗传学中长期存在的问题。一种可视化复杂有序关系的方法是使用有向图,其中图中的每个顶点都是一个标记的-bin。当连锁图谱之间没有排序冲突时,结果是一个有向无环图(DAG),然后可以对其进行线性化以生成共识图谱。

结果

用于简化和线性化共识图的新算法已作为一个名为 DAGGER 的 R 计算环境的包来实现。DAGGER 生成的简化共识图谱准确地捕捉了一系列连锁图谱中存在的有序关系。使用线性或二次规划,DAGGER 生成相对于连锁图谱具有最小误差的共识图谱,同时与它们保持有序一致。两种线性化方法都生成相对于连锁图谱平均值具有压缩性的共识图谱。然而,在重新缩放后,共识图谱在遗传模拟中的准确性(和标记密度)都高于单个连锁图谱。当应用于四个在近 3000 个 SNP 标记上进行基因型分析的大麦连锁图谱时,DAGGER 生成的共识图谱与现有的大麦共识 SNP 图谱相比具有改进的精细结构。连锁图谱和 DAGGER 图谱之间的均方根误差为每个标记间隔 0.82 cM,而现有的共识图谱为 2.28 cM。对存在物理图谱的 5HS 端粒处的大麦硬度基因座的检查证实,DAGGER 输出对于精细结构分析更准确。

结论

R 包 DAGGER 是一种有效的、免费的资源,用于整合一组一致的连锁图谱的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1b1/3179964/87209e4cb4e1/1471-2164-12-407-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验