Suppr超能文献

利用进化策略优化快速准确构建超密集一致性遗传图谱。

Fast and accurate construction of ultra-dense consensus genetic maps using evolution strategy optimization.

作者信息

Mester David, Ronin Yefim, Schnable Patrick, Aluru Srinivas, Korol Abraham

机构信息

Institute of Evolution, University of Haifa, Haifa, Israel.

Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America.

出版信息

PLoS One. 2015 Apr 13;10(4):e0122485. doi: 10.1371/journal.pone.0122485. eCollection 2015.

Abstract

Our aim was to develop a fast and accurate algorithm for constructing consensus genetic maps for chip-based SNP genotyping data with a high proportion of shared markers between mapping populations. Chip-based genotyping of SNP markers allows producing high-density genetic maps with a relatively standardized set of marker loci for different mapping populations. The availability of a standard high-throughput mapping platform simplifies consensus analysis by ignoring unique markers at the stage of consensus mapping thereby reducing mathematical complicity of the problem and in turn analyzing bigger size mapping data using global optimization criteria instead of local ones. Our three-phase analytical scheme includes automatic selection of ~100-300 of the most informative (resolvable by recombination) markers per linkage group, building a stable skeletal marker order for each data set and its verification using jackknife re-sampling, and consensus mapping analysis based on global optimization criterion. A novel Evolution Strategy optimization algorithm with a global optimization criterion presented in this paper is able to generate high quality, ultra-dense consensus maps, with many thousands of markers per genome. This algorithm utilizes "potentially good orders" in the initial solution and in the new mutation procedures that generate trial solutions, enabling to obtain a consensus order in reasonable time. The developed algorithm, tested on a wide range of simulated data and real world data (Arabidopsis), outperformed two tested state-of-the-art algorithms by mapping accuracy and computation time.

摘要

我们的目标是开发一种快速且准确的算法,用于为基于芯片的SNP基因分型数据构建共识遗传图谱,这些数据在作图群体之间具有高比例的共享标记。基于芯片的SNP标记基因分型能够为不同的作图群体生成具有相对标准化标记位点集的高密度遗传图谱。标准高通量作图平台的可用性通过在共识作图阶段忽略独特标记来简化共识分析,从而降低问题的数学复杂性,进而使用全局优化标准而非局部标准来分析更大规模的作图数据。我们的三相分析方案包括为每个连锁群自动选择约100 - 300个信息最丰富(可通过重组解析)的标记,为每个数据集构建稳定的骨架标记顺序并使用刀切法重采样进行验证,以及基于全局优化标准的共识作图分析。本文提出的一种具有全局优化标准的新型进化策略优化算法能够生成高质量、超密集的共识图谱,每个基因组有数千个标记。该算法在初始解和生成试验解的新突变过程中利用“潜在良好顺序”,从而能够在合理时间内获得共识顺序。所开发的算法在广泛的模拟数据和实际数据(拟南芥)上进行了测试,在作图准确性和计算时间方面优于两种经过测试的最先进算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/322b/4395089/a76812af686f/pone.0122485.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验