Institute of Human Behavioral medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-744, Republic of Korea.
Psychiatry Res. 2012 Jan 30;195(1-2):76-82. doi: 10.1016/j.psychres.2011.06.020. Epub 2011 Aug 9.
Determining the exact duration of seizure activity is an important factor for predicting the efficacy of electroconvulsive therapy (ECT). In most cases, seizure duration is estimated manually by observing the electroencephalogram (EEG) waveform. In this article, we propose a method based on sample entropy (SampEn) that automatically detects the termination time of an ECT-induced seizure. SampEn decreases during seizure activity and has its smallest value at the boundary of seizure termination. SampEn reflects not only different states of regularity and complexity in the EEG but also changes in EEG amplitude before and after seizure activity. Using SampEn, we can more precisely determine seizure termination time and total seizure duration.
确定癫痫发作活动的确切持续时间是预测电惊厥疗法(ECT)疗效的一个重要因素。在大多数情况下,通过观察脑电图(EEG)波形手动估计发作持续时间。在本文中,我们提出了一种基于样本熵(SampEn)的方法,该方法可自动检测 ECT 诱导的癫痫发作的终止时间。SampEn 在癫痫发作活动期间减小,并且在癫痫发作终止边界处具有最小值。SampEn 不仅反映了 EEG 中的规则性和复杂性的不同状态,还反映了癫痫发作前后 EEG 幅度的变化。使用 SampEn,我们可以更准确地确定癫痫发作终止时间和总发作持续时间。