Ferreira S C, Alves S G, Brito A Faissal, Moreira J G
Departamento de Física, Universidade Federal Viçosa, 36571-000 Viçosa, Minas Gerais, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 1):051402. doi: 10.1103/PhysRevE.71.051402. Epub 2005 May 16.
In this work, the transition between diffusion-limited (DLA) and ballistic aggregation (BA) models was reconsidered using a model in which biased random walks simulate the particle trajectories. The bias is controlled by a parameter lambda, which assumes the value lambda=0 (1) for the ballistic (diffusion-limited) aggregation model. Patterns growing from a single seed were considered. In order to simulate large clusters, an efficient algorithm was developed. For lambda (not equal to) 0 , the patterns are fractal on small length scales, but homogeneous on large ones. We evaluated the mean density of particles (-)rho in the region defined by a circle of radius r centered at the initial seed. As a function of r, (-)rho reaches the asymptotic value rho(0)(lambda) following a power law (-)rho = rho(0) +Ar(-gamma) with a universal exponent gamma=0.46 (2) , independent of lambda . The asymptotic value has the behavior rho(0) approximately |1-lambda|(beta) , where beta=0.26 (1) . The characteristic crossover length that determines the transition from DLA- to BA-like scaling regimes is given by xi approximately |1-lambda|(-nu) , where nu=0.61 (1) , while the cluster mass at the crossover follows a power law M(xi) approximately |1-lambda(-alpha) , where alpha=0.97 (2) . We deduce the scaling relations beta=nugamma and beta=2nu-alpha between these exponents.
在这项工作中,我们使用一种模型重新考虑了扩散限制聚集(DLA)模型和弹道聚集(BA)模型之间的转变,在该模型中,有偏随机游走模拟粒子轨迹。偏差由参数λ控制,对于弹道(扩散限制)聚集模型,λ取值为λ = 0(1)。我们考虑了从单个种子生长出的图案。为了模拟大型团簇,开发了一种高效算法。对于λ≠0,图案在小长度尺度上是分形的,但在大长度尺度上是均匀的。我们评估了以初始种子为中心、半径为r的圆所定义区域内粒子的平均密度ρ̅。作为r的函数,ρ̅遵循幂律ρ̅ = ρ₀ + Ar^(-γ)达到渐近值ρ₀(λ),其中通用指数γ = 0.46(2),与λ无关。渐近值具有ρ₀ ≈ |1 - λ|^β的行为,其中β = 0.26(1)。决定从DLA到类似BA标度 regime转变的特征交叉长度由ξ ≈ |1 - λ|^(-ν)给出,其中ν = 0.61(1),而交叉处的团簇质量遵循幂律M(ξ) ≈ |1 - λ|^(-α),其中α = 0.97(2)。我们推导了这些指数之间的标度关系β = νγ和β = 2ν - α。