Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, USA.
J Biol Chem. 2011 Oct 7;286(40):34643-53. doi: 10.1074/jbc.M111.250928. Epub 2011 Aug 12.
Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp(161), Trp(45), and Trp(25)) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (R(H)) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg · ml(-1). We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp(161)) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp(25) and Trp(45) is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite.
釉原蛋白自我组装形成细胞外蛋白基质,为不断生长的釉质磷灰石晶体提供模板。为了更深入地了解釉原蛋白纳米球形成的分子机制,我们通过改变 pH 值、温度和蛋白质浓度来操纵釉原蛋白单体之间的相互作用,从而产生分离的亚稳态釉原蛋白低聚物。使用重组猪釉原蛋白(rP172 和 rP148)和三个仅含有一个色氨酸(Trp(161)、Trp(45)和 Trp(25))的突变体。动态光散射和荧光研究表明,低聚物是亚稳态的,与单体处于不断平衡中。在 pH 5.5 下,在 4 至 10 mg·ml(-1)之间观察到具有平均流体力学半径(R(H))为 7.5nm 的稳定低聚物。我们没有发现任何证据表明单体自组装成低聚物时会显著增加折叠,表明它们是无规的。带有单个色氨酸釉原蛋白的荧光实验表明,在低聚物化过程中,釉原蛋白的 C 端(在残基 Trp(161)周围)暴露在低聚物的表面,而 N 端区域(在 Trp(25)和 Trp(45)周围)参与蛋白质-蛋白质相互作用。截短的 rP148 形成类似但较小的低聚物,表明 C 端对于釉原蛋白低聚物化不是关键的。我们提出了一种通过低聚物形成纳米球的模型,我们预测纳米球将在轻度酸性环境中通过组氨酸质子化而分解形成低聚物。我们进一步提出,低聚物结构可能是釉质磷灰石成熟过程中的功能成分。