Suppr超能文献

步态研究中肌电线性包络的时间特征提取与聚类分析

Temporal feature extraction and clustering analysis of electromyographic linear envelopes in gait studies.

作者信息

Chen J J, Shiavi R

机构信息

Department of Electrical and Biomedical Engineering, Vanderbilt University, Nashville, TN 37235.

出版信息

IEEE Trans Biomed Eng. 1990 Mar;37(3):295-302. doi: 10.1109/10.52330.

Abstract

A technique for automatically clustering linear envelopes of the EMG during gait has been developed which uses a temporal feature representation and a maximum peak matching scheme. This new technique provides a viable way to define compact and meaningful EMG waveform features. The envelope matching is performed by dynamic programming, providing qualitatively the largest numbers of matched peaks and quantitatively a minimum distance measurement. The resulting averaged EMG profiles have low statistical variation and can serve as templates for EMG comparison and further classification.

摘要

一种在步态期间自动对肌电图的线性包络进行聚类的技术已经被开发出来,该技术使用了一种时间特征表示法和一种最大峰值匹配方案。这种新技术提供了一种可行的方法来定义紧凑且有意义的肌电图波形特征。包络匹配通过动态规划来执行,定性地提供最大数量的匹配峰值,定量地提供最小距离测量。所得的平均肌电图轮廓具有低统计变异性,可作为肌电图比较和进一步分类的模板。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验