Chen J J, Shiavi R
Department of Electrical and Biomedical Engineering, Vanderbilt University, Nashville, TN 37235.
IEEE Trans Biomed Eng. 1990 Mar;37(3):295-302. doi: 10.1109/10.52330.
A technique for automatically clustering linear envelopes of the EMG during gait has been developed which uses a temporal feature representation and a maximum peak matching scheme. This new technique provides a viable way to define compact and meaningful EMG waveform features. The envelope matching is performed by dynamic programming, providing qualitatively the largest numbers of matched peaks and quantitatively a minimum distance measurement. The resulting averaged EMG profiles have low statistical variation and can serve as templates for EMG comparison and further classification.
一种在步态期间自动对肌电图的线性包络进行聚类的技术已经被开发出来,该技术使用了一种时间特征表示法和一种最大峰值匹配方案。这种新技术提供了一种可行的方法来定义紧凑且有意义的肌电图波形特征。包络匹配通过动态规划来执行,定性地提供最大数量的匹配峰值,定量地提供最小距离测量。所得的平均肌电图轮廓具有低统计变异性,可作为肌电图比较和进一步分类的模板。