Suppr超能文献

肌电图分析在不同任务中提高糖尿病预防筛查效果:一种聚类分析方法。

EMG analysis across different tasks improves prevention screenings in diabetes: a cluster analysis approach.

机构信息

Department of Information Engineering, University of Padova, Via Gradenigo 6B, 35131, Padova, Italy.

Department of Clinical Medicine and Metabolic Disease, University Polyclinic, Padova, Italy.

出版信息

Med Biol Eng Comput. 2022 Jun;60(6):1659-1673. doi: 10.1007/s11517-022-02559-3. Epub 2022 Apr 15.

Abstract

The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic subjects with and without neuropathy and discriminate them from healthy controls and second to assess the role of the task acquired in the classification process. For this purpose 30 subjects were examined (10 controls, 10 diabetics with and 10 without neuropathy) whilst walking and stair ascending and descending. The electrical activity of six muscles was recorded bilaterally through a 16-channel sEMG system synchronised with a stereophotogrammetric system: Rectus Femoris, Gluteus Medius, Tibialis Anterior, Peroneus Longus, Gastrocnemius Lateralis and Extensor Digitorum. Spatiotemporal parameters of gait and stair climbing and the following sEMG parameters were extracted: signal envelope, activity duration, timing of activation and deactivation. A hierarchical clustering algorithm was applied to the whole set of parameters with different distances and linkage methods. Results showed that only by applying the Ward agglomerative hierarchical clustering (Hamming distance) to the all set of parameters extracted from both tasks, 5 well-separated clusters were obtained: cluster 3 included only DS subjects, cluster 2 and 4 only controls and cluster 1 and 5 only DNS subjects. This method could be used for planning rehabilitation treatments.

摘要

这项工作的目的有两个

一方面是确定表面肌电图(sEMG)的最合适参数,以便对有和没有神经病变的糖尿病患者进行分类,并将其与健康对照组区分开来;另一方面是评估任务在分类过程中的作用。为此,对 30 名受试者(10 名对照组、10 名糖尿病伴神经病变组和 10 名无神经病变组)进行了行走、上下楼梯的检查。通过 16 通道 sEMG 系统同步记录双侧的肌电活动:股直肌、臀中肌、胫骨前肌、腓骨长肌、腓肠肌外侧和伸趾肌。步态和爬楼梯的时空参数以及以下 sEMG 参数被提取:信号包络、活动持续时间、激活和去激活的时间。应用层次聚类算法对不同距离和连接方法的整套参数进行分析。结果表明,只有通过对两种任务提取的整套参数应用 Ward 凝聚层次聚类(汉明距离),才能得到 5 个分离良好的聚类:聚类 3 仅包括 DS 患者,聚类 2 和 4 仅包括对照组,聚类 1 和 5 仅包括 DNS 患者。这种方法可用于规划康复治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ef/9079040/0824318d50b1/11517_2022_2559_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验