Suppr超能文献

高通量酵母质粒过表达筛选

High-throughput yeast plasmid overexpression screen.

作者信息

Fleming Michael S, Gitler Aaron D

机构信息

Neuroscience Graduate Group, University of Pennsylvania School of Medicine, USA.

出版信息

J Vis Exp. 2011 Jul 27(53):2836. doi: 10.3791/2836.

Abstract

The budding yeast, Saccharomyces cerevisiae, is a powerful model system for defining fundamental mechanisms of many important cellular processes, including those with direct relevance to human disease. Because of its short generation time and well-characterized genome, a major experimental advantage of the yeast model system is the ability to perform genetic screens to identify genes and pathways that are involved in a given process. Over the last thirty years such genetic screens have been used to elucidate the cell cycle, secretory pathway, and many more highly conserved aspects of eukaryotic cell biology (1-5). In the last few years, several genomewide libraries of yeast strains and plasmids have been generated (6-10). These collections now allow for the systematic interrogation of gene function using gain- and loss-of-function approaches (11-16). Here we provide a detailed protocol for the use of a high-throughput yeast transformation protocol with a liquid handling robot to perform a plasmid overexpression screen, using an arrayed library of 5,500 yeast plasmids. We have been using these screens to identify genetic modifiers of toxicity associated with the accumulation of aggregation-prone human neurodegenerative disease proteins. The methods presented here are readily adaptable to the study of other cellular phenotypes of interest.

摘要

出芽酵母,即酿酒酵母,是一种强大的模型系统,可用于定义许多重要细胞过程的基本机制,包括那些与人类疾病直接相关的过程。由于其短的世代时间和特征明确的基因组,酵母模型系统的一个主要实验优势是能够进行遗传筛选,以鉴定参与特定过程的基因和途径。在过去三十年中,此类遗传筛选已被用于阐明细胞周期、分泌途径以及真核细胞生物学中更多高度保守的方面(1-5)。在过去几年中,已经构建了几个酵母菌株和质粒的全基因组文库(6-10)。这些文库现在允许使用功能获得和功能丧失方法对基因功能进行系统研究(11-16)。在这里,我们提供了一个详细的方案,用于使用液体处理机器人的高通量酵母转化方案,以使用一个包含5500个酵母质粒的阵列文库进行质粒过表达筛选。我们一直在使用这些筛选来鉴定与易聚集的人类神经退行性疾病蛋白积累相关的毒性的遗传修饰因子。这里介绍的方法很容易适用于研究其他感兴趣的细胞表型。

相似文献

1
High-throughput yeast plasmid overexpression screen.
J Vis Exp. 2011 Jul 27(53):2836. doi: 10.3791/2836.
2
High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots.
PLoS One. 2017 Mar 20;12(3):e0174128. doi: 10.1371/journal.pone.0174128. eCollection 2017.
3
High-Copy Yeast Library Construction and High-Copy Rescue Genetic Screen in Saccharomyces cerevisiae.
Methods Mol Biol. 2021;2196:77-83. doi: 10.1007/978-1-0716-0868-5_7.
4
Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.
BMC Biotechnol. 2009 Nov 20;9:95. doi: 10.1186/1472-6750-9-95.
5
Mating-based Overexpression Library Screening in Yeast.
J Vis Exp. 2018 Jul 6(137):57978. doi: 10.3791/57978.
6
Peroxisome Mini-Libraries: Systematic Approaches to Study Peroxisomes Made Easy.
Methods Mol Biol. 2017;1595:305-318. doi: 10.1007/978-1-4939-6937-1_28.
8
Screening for genetic modifiers of amyloid toxicity in yeast.
Methods Enzymol. 2006;412:201-22. doi: 10.1016/S0076-6879(06)12013-3.
9
COSPLAY: An expandable toolbox for combinatorial and swift generation of expression plasmids in yeast.
PLoS One. 2019 Aug 28;14(8):e0220694. doi: 10.1371/journal.pone.0220694. eCollection 2019.
10
Advanced methods for high-throughput microscopy screening of genetically modified yeast libraries.
Methods Mol Biol. 2011;781:127-59. doi: 10.1007/978-1-61779-276-2_8.

引用本文的文献

1
A Genetic Screen for Human Genes Suppressing FUS Induced Toxicity in Yeast.
G3 (Bethesda). 2020 Jun 1;10(6):1843-1852. doi: 10.1534/g3.120.401164.
2
Unbiased Screens for Modifiers of Alpha-Synuclein Toxicity.
Curr Neurol Neurosci Rep. 2019 Feb 9;19(2):8. doi: 10.1007/s11910-019-0925-z.
3
Yeast genetic interaction screens in the age of CRISPR/Cas.
Curr Genet. 2019 Apr;65(2):307-327. doi: 10.1007/s00294-018-0887-8. Epub 2018 Sep 25.
4
Mating-based Overexpression Library Screening in Yeast.
J Vis Exp. 2018 Jul 6(137):57978. doi: 10.3791/57978.
5
Efficient Sporulation of Saccharomyces cerevisiae in a 96 Multiwell Format.
J Vis Exp. 2016 Sep 17(115):54584. doi: 10.3791/54584.

本文引用的文献

1
4
A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity.
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6439-44. doi: 10.1073/pnas.0802082105. Epub 2008 Apr 23.
5
Beer and bread to brains and beyond: can yeast cells teach us about neurodegenerative disease?
Neurosignals. 2008;16(1):52-62. doi: 10.1159/000109759. Epub 2007 Dec 5.
7
Exploring genetic interactions and networks with yeast.
Nat Rev Genet. 2007 Jun;8(6):437-49. doi: 10.1038/nrg2085.
8
Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.
Genome Res. 2007 Apr;17(4):536-43. doi: 10.1101/gr.6037607. Epub 2007 Feb 23.
9
Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Science. 2006 Oct 6;314(5796):130-3. doi: 10.1126/science.1134108.
10
Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models.
Science. 2006 Jul 21;313(5785):324-8. doi: 10.1126/science.1129462. Epub 2006 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验