Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
IEEE Trans Image Process. 2012 Mar;21(3):1272-83. doi: 10.1109/TIP.2011.2164420. Epub 2011 Aug 12.
In this paper, a visual attention model is incorporated for efficient saliency detection, and the salient regions are employed as object seeds for our automatic object segmentation system. In contrast with existing interactive segmentation approaches that require considerable user interaction, the proposed method does not require it, i.e., the segmentation task is fulfilled in a fully automatic manner. First, we introduce a novel unified spectral-domain approach for saliency detection. Our visual attention model originates from a well-known property of the human visual system that the human visual perception is highly adaptive and sensitive to structural information in images rather than nonstructural information. Then, based on the saliency map, we propose an iterative self-adaptive segmentation framework for more accurate object segmentation. Extensive tests on a variety of cluttered natural images show that the proposed algorithm is an efficient indicator for characterizing the human perception and it can provide satisfying segmentation performance.
本文提出了一种视觉注意模型,用于高效的显著度检测,并将显著区域用作自动目标分割系统的目标种子。与现有的需要大量用户交互的交互式分割方法不同,所提出的方法不需要交互,也就是说,分割任务是全自动完成的。首先,我们引入了一种新颖的统一谱域方法用于显著度检测。我们的视觉注意模型源于人类视觉系统的一个著名特性,即人类视觉感知对图像中的结构信息非常适应和敏感,而对非结构信息则不敏感。然后,基于显著图,我们提出了一种迭代自适应分割框架,以实现更准确的目标分割。在各种杂乱自然图像上的广泛测试表明,所提出的算法是一种有效的特征描述符,能够很好地模拟人类的感知,并且能够提供令人满意的分割性能。