Ko Byoung Chul, Nam Jae-Yeal
Department of Computer Engineering, Shindang-dong Dalseo-gu, Keimyung University, Daegu, Korea.
J Opt Soc Am A Opt Image Sci Vis. 2006 Oct;23(10):2462-70. doi: 10.1364/josaa.23.002462.
We propose a novel object-of-interest (OOI) segmentation algorithm for various images that is based on human attention and semantic region clustering. As object-based image segmentation is beyond current computer vision techniques, the proposed method segments an image into regions, which are then merged as a semantic object. At the same time, an attention window (AW) is created based on the saliency map and saliency points from an image. Within the AW, a support vector machine is used to select the salient regions, which are then clustered into the OOI using the proposed region merging. Unlike other algorithms, the proposed method allows multiple OOIs to be segmented according to the saliency map.
我们提出了一种基于人类注意力和语义区域聚类的新颖的感兴趣对象(OOI)分割算法,用于各种图像。由于基于对象的图像分割超出了当前的计算机视觉技术,因此所提出的方法将图像分割成多个区域,然后将这些区域合并为一个语义对象。同时,基于图像的显著性图和显著点创建一个注意力窗口(AW)。在AW内,使用支持向量机选择显著区域,然后使用所提出的区域合并方法将这些区域聚类为OOI。与其他算法不同,所提出的方法允许根据显著性图分割多个OOI。