Suppr超能文献

用于求解时变线性不等式的张氏神经网络与梯度神经网络

Zhang neural network versus gradient neural network for solving time-varying linear inequalities.

作者信息

Xiao Lin, Zhang Yunong

机构信息

School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510006, China.

出版信息

IEEE Trans Neural Netw. 2011 Oct;22(10):1676-84. doi: 10.1109/TNN.2011.2163318. Epub 2011 Aug 15.

Abstract

By following Zhang design method, a new type of recurrent neural network [i.e., Zhang neural network (ZNN)] is presented, investigated, and analyzed for online solution of time-varying linear inequalities. Theoretical analysis is given on convergence properties of the proposed ZNN model. For comparative purposes, the conventional gradient neural network is developed and exploited for solving online time-varying linear inequalities as well. Computer simulation results further verify and demonstrate the efficacy, novelty, and superiority of such a ZNN model and its method for solving time-varying linear inequalities.

摘要

通过遵循张的设计方法,提出、研究并分析了一种新型递归神经网络[即张神经网络(ZNN)],用于在线求解时变线性不等式。对所提出的ZNN模型的收敛特性进行了理论分析。为了进行比较,还开发并利用传统梯度神经网络来在线求解时变线性不等式。计算机仿真结果进一步验证并证明了这种ZNN模型及其求解时变线性不等式方法的有效性、新颖性和优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验