IEEE Trans Cybern. 2013 Apr;43(2):490-503. doi: 10.1109/TSMCB.2012.2210038. Epub 2013 Mar 7.
Since 2001, a novel type of recurrent neural network called Zhang neural network (ZNN) has been proposed, investigated, and exploited for solving online time-varying problems in a variety of scientific and engineering fields. In this paper, three discrete-time ZNN models are first proposed to solve the problem of time-varying quadratic minimization (TVQM). Such discrete-time ZNN models exploit methodologically the time derivatives of time-varying coefficients and the inverse of the time-varying coefficient matrix. To eliminate explicit matrix-inversion operation, the quasi-Newton BFGS method is introduced, which approximates effectively the inverse of the Hessian matrix; thus, three discrete-time ZNN models combined with the quasi-Newton BFGS method (named ZNN-BFGS) are proposed and investigated for TVQM. In addition, according to the criterion of whether the time-derivative information of time-varying coefficients is explicitly known/used or not, these proposed discrete-time models are classified into three categories: 1) models with time-derivative information known (i.e., ZNN-K and ZNN-BFGS-K models), 2) models with time-derivative information unknown (i.e., ZNN-U and ZNN-BFGS-U models), and 3) simplified models without using time-derivative information (i.e., ZNN-S and ZNN-BFGS-S models). The well-known gradient-based neural network is also developed to handle TVQM for comparison with the proposed ZNN and ZNN-BFGS models. Illustrative examples are provided and analyzed to substantiate the efficacy of these proposed models for TVQM.
自 2001 年以来,一种新型的递归神经网络,即张神经网络(ZNN),已经被提出、研究并应用于解决各种科学和工程领域中的在线时变问题。在本文中,首先提出了三个离散时间 ZNN 模型来解决时变二次最小化问题(TVQM)。这些离散时间 ZNN 模型在方法上利用了时变系数的时间导数和时变系数矩阵的逆。为了消除显式矩阵求逆运算,引入了拟牛顿 BFGS 方法,该方法有效地逼近了海森矩阵的逆;因此,提出并研究了三个离散时间 ZNN 模型与拟牛顿 BFGS 方法相结合的模型(称为 ZNN-BFGS),用于 TVQM。此外,根据时变系数的时间导数信息是否显式已知/使用的标准,这些提出的离散时间模型可以分为三类:1)具有已知时间导数信息的模型(即 ZNN-K 和 ZNN-BFGS-K 模型),2)具有未知时间导数信息的模型(即 ZNN-U 和 ZNN-BFGS-U 模型),以及 3)不使用时间导数信息的简化模型(即 ZNN-S 和 ZNN-BFGS-S 模型)。还开发了著名的基于梯度的神经网络来处理 TVQM,以便与提出的 ZNN 和 ZNN-BFGS 模型进行比较。提供并分析了说明性示例,以证实这些提出的模型在 TVQM 中的有效性。