Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.
Environ Health Perspect. 2011 Dec;119(12):1754-9. doi: 10.1289/ehp.1103533. Epub 2011 Aug 17.
Computer-based modeling is part of a new approach to predictive toxicology.
We investigated the usefulness of an integrated computational systems biology approach in a case study involving the isomers and metabolites of the pesticide dichlorodiphenyltrichloroethane (DDT) to ascertain their possible links to relevant adverse effects.
We extracted chemical-protein association networks for each DDT isomer and its metabolites using ChemProt, a disease chemical biology database that includes both binding and gene expression data, and we explored protein-protein interactions using a human interactome network. To identify associated dysfunctions and diseases, we integrated protein-disease annotations into the protein complexes using the Online Mendelian Inheritance in Man database and the Comparative Toxicogenomics Database.
We found 175 human proteins linked to p,p'-DDT, and 187 to o,p'-DDT.Dichlorodiphenyldichloroethylene (p,p'-DDE) was the metabolite with the highest number of links, with 52. We grouped proteins for each compound based on their disease annotations. Although the two data sources differed in linkage to diseases, integrated results predicted that most diseases were linked to the two DDT isomers. Asthma was uniquely linked with p,p'-DDT, and autism with o,p'-DDT. Several reproductive and neurobehavioral outcomes and cancer types were linked to all three compounds.
Computer-based modeling relies on available information. Although differences in linkages to proteins may be due to incomplete data, our results appear meaningful and suggest that the parent DDT compounds may be responsible for more disease connections than the metabolites. The findings illustrate the potential use of computational approaches to toxicology.
基于计算机的建模是预测毒理学新方法的一部分。
我们通过涉及杀虫剂滴滴涕(DDT)异构体和代谢物的案例研究,调查了整合计算系统生物学方法的有用性,以确定它们与相关不良影响的可能联系。
我们使用 ChemProt 提取了每个 DDT 异构体及其代谢物的化学 - 蛋白质关联网络,ChemProt 是一个疾病化学生物学数据库,包括结合和基因表达数据,我们使用人类相互作用网络探索蛋白质 - 蛋白质相互作用。为了识别相关的功能障碍和疾病,我们使用在线孟德尔遗传在人体内数据库和比较毒理学数据库将蛋白质 - 疾病注释整合到蛋白质复合物中。
我们发现 175 种人类蛋白质与 p,p'-DDT 相关,187 种与 o,p'-DDT 相关。Dichlorodiphenyldichloroethylene (p,p'-DDE) 是与疾病相关的代谢物数量最多的,有 52 个。我们根据每个化合物的疾病注释对蛋白质进行分组。尽管两个数据源在与疾病的联系上有所不同,但综合结果预测大多数疾病与两种 DDT 异构体有关。哮喘与 p,p'-DDT 独特相关,自闭症与 o,p'-DDT 相关。几种生殖和神经行为结果以及癌症类型与所有三种化合物有关。
基于计算机的建模依赖于现有信息。尽管与蛋白质的联系差异可能是由于数据不完整,但我们的结果似乎有意义,并表明母体 DDT 化合物可能比代谢物更能引起更多疾病的联系。研究结果表明计算方法在毒理学中的潜在应用。