Division of Primary Care, University Park, Nottingham NG2 7RD, UK.
BMJ. 2011 Aug 16;343:d4656. doi: 10.1136/bmj.d4656.
To derive and validate a new clinical risk prediction algorithm (QThrombosis, www.qthrombosis.org) to estimate individual patients' risk of venous thromboembolism.
Prospective open cohort study using routinely collected data from general practices. Cox proportional hazards models used in derivation cohort to derive risk equations evaluated at 1 and 5 years. Measures of calibration and discrimination undertaken in validation cohort.
564 general practices in England and Wales contributing to the QResearch database.
Patients aged 25-84 years, with no record of pregnancy in the preceding 12 months or any previous venous thromboembolism, and not prescribed oral anticoagulation at baseline: 2,314,701 in derivation cohort and 1,240,602 in validation cohort. Outcomes Incident cases of venous thromboembolism, either deep vein thrombosis or pulmonary embolism, recorded in primary care records or linked cause of death records.
The derivation cohort included 14,756 incident cases of venous thromboembolism from 10,095,199 person years of observation (rate of 14.6 per 10,000 person years). The validation cohort included 6913 incident cases from 4,632,694 person years of observation (14.9 per 10,000 person years). Independent predictors included in the final model for men and women were age, body mass index, smoking status, varicose veins, congestive cardiac failure, chronic renal disease, cancer, chronic obstructive pulmonary disease, inflammatory bowel disease, hospital admission in past six months, and current prescriptions for antipsychotic drugs. We also included oral contraceptives, tamoxifen, and hormone replacement therapy in the final model for women. The risk prediction equation explained 33% of the variation in women and 34% in men in the validation cohort evaluated at 5 years The D statistic was 1.43 for women and 1.45 for men. The receiver operating curve statistic was 0.75 for both sexes. The model was well calibrated.
We have developed and validated a new risk prediction model that quantifies absolute risk of thrombosis at 1 and 5 years. It can help identify patients at high risk of venous thromboembolism for prevention. The algorithm is based on simple clinical variables which the patient is likely to know or which are routinely recorded in general practice records. The algorithm could be integrated into general practice clinical computer systems and used to risk assess patients before hospital admission or starting medication which might increase the risk of venous thromboembolism.
开发和验证一种新的临床风险预测算法(QThrombosis,www.qthrombosis.org),以估计个体患者静脉血栓栓塞的风险。
使用常规收集的来自普通实践的数据进行前瞻性开放队列研究。在推导队列中使用 Cox 比例风险模型来推导 1 年和 5 年的风险方程。在验证队列中进行校准和区分的度量。
英格兰和威尔士的 564 家普通实践参与了 QResearch 数据库。
年龄在 25-84 岁之间,在过去 12 个月内没有怀孕记录或任何先前的静脉血栓栓塞记录,并且基线时未开口服抗凝剂:推导队列中的 2314701 人和验证队列中的 1240602 人。结局:在初级保健记录或关联的死因记录中记录的静脉血栓栓塞事件的首发病例,包括深静脉血栓形成或肺栓塞。
推导队列包括来自 10095199 人年观察的 14756 例静脉血栓栓塞事件(每 10000 人年 14.6 例)。验证队列包括来自 4632694 人年观察的 6913 例首发事件(每 10000 人年 14.9 例)。男性和女性最终模型中的独立预测因素包括年龄、体重指数、吸烟状况、静脉曲张、充血性心力衰竭、慢性肾脏疾病、癌症、慢性阻塞性肺疾病、炎症性肠病、过去六个月内住院治疗以及当前抗精神病药物处方。我们还在女性的最终模型中包括了口服避孕药、他莫昔芬和激素替代疗法。验证队列中,5 年后女性的风险预测方程解释了 33%的变异,男性为 34%。D 统计量为女性 1.43,男性 1.45。接受者操作曲线统计量为两性均为 0.75。该模型具有良好的校准度。
我们开发并验证了一种新的风险预测模型,可量化 1 年和 5 年的血栓形成绝对风险。它可以帮助识别有静脉血栓栓塞高风险的患者进行预防。该算法基于患者可能知道或常规记录在普通实践记录中的简单临床变量。该算法可以集成到普通实践临床计算机系统中,用于在入院前或开始可能增加静脉血栓栓塞风险的药物治疗前对患者进行风险评估。