Ingraham H A, Albert V R, Chen R P, Crenshaw 3d E B, Elsholtz H P, He X, Kapiloff M S, Mangalam H J, Swanson L W, Treacy M N
Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, La Jolla 92093.
Annu Rev Physiol. 1990;52:773-91. doi: 10.1146/annurev.ph.52.030190.004013.
The anterior pituitary gland provides a model for investigating the molecular basis for the appearance of phenotypically distinct cell types, within an organ, a central question in development. The rat prolactin and growth hormone genes are selectively expressed in distinct cell types (lactotrophs and somatotrophs) of the anterior pituitary gland, which reflect differential mechanisms of gene activation or restriction because of interactions of multiple factors binding to these genes. We find that the pituitary-specific 33,000 dalton transcription factor, Pit-1, normally expressed in somatotrophs, lactotrophs, and thyrotrophs, can bind to and activate both growth hormone and prolactin promoters in vitro at levels even tenfold lower than those normally present in pituitary cells. In the case of the prolactin gene, high levels of expression in transgenic animals required two cis-active regions; a distal enhancer (-1.8 to -1.5 kb) and a proximal region (-422 to +33 bp). Each of these regions alone can direct low levels of fusion gene expression to prolactin-producing cell types in transgenic mice, but a synergistic interaction between these regions is necessary for high levels of expression. The initial appearance of the prolactin transgene expression closely follows the appearance of high levels of Pit-1, but later increases in expression coincident with appearance of mature lactotrophs suggest the operation of additional, critical positive factor(s). Unexpectedly, transgenes containing the distal enhancer removed from its normal context are expressed in both the prolactin-producing lactotrophs and the TSH-producing thyrotrophs, thereby suggesting that sequences flanking this enhancer are necessary to restrict expression to the correct cell type within the pituitary. These data indicate that distinct processes of gene activation and restriction are necessary for the fidelity of cell-type specific expression within an organ. Consistent with this model, we find that lactotroph cell lines that cannot express the growth hormone gene contain high levels of functional Pit-1. We suggest a large, highly related POU-domain gene family, potentially exceeding 100 members, has been conserved and expanded in evolution to meet the increasing requirements for more intricate patterns of cell phenotypes. The POU-domain subgroup of the homeodomain gene family, in concert with other homeodomain proteins and with other classes of transcription factors, is likely to contribute to the establishment of the mammalian neuroendocrine system.
垂体前叶为研究器官内表型不同的细胞类型出现的分子基础提供了一个模型,这是发育中的一个核心问题。大鼠催乳素基因和生长激素基因在前叶垂体的不同细胞类型(催乳素分泌细胞和生长激素分泌细胞)中选择性表达,这反映了由于多种因子与这些基因相互作用而导致的基因激活或限制的不同机制。我们发现,垂体特异性的33000道尔顿转录因子Pit-1,通常在生长激素分泌细胞、催乳素分泌细胞和促甲状腺激素分泌细胞中表达,它在体外能够结合并激活生长激素和催乳素启动子,其水平甚至比垂体细胞中正常存在的水平低十倍。就催乳素基因而言,转基因动物中的高表达水平需要两个顺式作用区域:一个远端增强子(-1.8至-1.5 kb)和一个近端区域(-422至+33 bp)。这些区域单独一个都能在转基因小鼠中将低水平的融合基因表达导向产生催乳素的细胞类型,但这些区域之间的协同相互作用对于高水平表达是必要的。催乳素转基因表达的最初出现紧跟高水平Pit-1的出现,但随后表达的增加与成熟催乳素分泌细胞的出现同时发生,这表明存在其他关键的正调控因子。出乎意料的是,包含从其正常背景中移除的远端增强子的转基因在产生催乳素的催乳素分泌细胞和产生促甲状腺激素的促甲状腺激素分泌细胞中都有表达,从而表明该增强子侧翼的序列对于将表达限制在垂体内正确的细胞类型是必要的。这些数据表明,基因激活和限制的不同过程对于器官内细胞类型特异性表达的准确性是必要的。与此模型一致,我们发现不能表达生长激素基因的催乳素分泌细胞系含有高水平的功能性Pit-1。我们认为,一个庞大的、高度相关的POU结构域基因家族,其成员可能超过100个,在进化过程中得到了保守和扩展,以满足对更复杂细胞表型模式的不断增加的需求。同源结构域基因家族的POU结构域亚组,与其他同源结构域蛋白以及其他类别的转录因子协同作用,可能有助于建立哺乳动物神经内分泌系统。