Institute for Integrative Nanosciences, IFW Dresden, Dresden, Germany.
J Am Chem Soc. 2011 Sep 28;133(38):14860-3. doi: 10.1021/ja205012j. Epub 2011 Aug 23.
There is a great interest in reducing the toxicity of the fuel used to self-propel artificial nanomachines. Therefore, a method to increase the efficiency of the conversion of chemicals into mechanical energy is desired. Here, we employed temperature control to increase the efficiency of microjet engines while simultaneously reducing the amount of peroxide fuel needed. At physiological temperatures, i.e. 37 °C, only 0.25% H(2)O(2) is needed to propel the microjets at 140 μm s(-1), which corresponds to three body lengths per second. In addition, at 5% H(2)O(2), the microjets acquire superfast speeds, reaching 10 mm s(-1). The dynamics of motion is altered when the speed is increased; i.e., the motion deviates from linear to curvilinear trajectories. The observations are modeled empirically.
人们对于降低用于自主推进人工纳米机器的燃料毒性非常感兴趣。因此,人们希望有一种方法可以提高将化学能转化为机械能的效率。在这里,我们采用温度控制来提高微喷射引擎的效率,同时减少所需过氧化物燃料的量。在生理温度,即 37°C 下,只需 0.25% H(2)O(2) 就可推动微喷射器以 140 μm s(-1)的速度前进,这相当于每秒三个体长。此外,在 5% H(2)O(2)下,微喷射器获得超高速,达到 10 mm s(-1)。当速度增加时,运动的动力学发生变化;即,运动从线性轨迹变为曲线轨迹。这些观察结果通过经验模型进行了模拟。