Suppr超能文献

下行皮质脊髓控制节段间动力学。

Descending corticospinal control of intersegmental dynamics.

机构信息

Département de Physiologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.

出版信息

J Neurosci. 2011 Aug 17;31(33):11968-79. doi: 10.1523/JNEUROSCI.0132-11.2011.

Abstract

To make an accurate movement, the CNS has to overcome the inherent complexities of the multijoint limb. For example, interaction torques arise when motion of individual arm segments propagates to adjacent segments causing their movement without any muscle contractions. Since these passive joint torques significantly add to the overall torques generated by active muscular contractions, they must be taken into account during planning or execution of goal-directed movements. We investigated the role of the corticospinal tract in compensating for the interaction torques during arm movements in humans. Twelve subjects reached to visual targets with their arm supported by a robotic exoskeleton. Reaching to one target was accompanied by interaction torques that assisted the movement, while reaching to the other target was accompanied by interaction torques that resisted the movement. Corticospinal excitability was assessed at different times during movement using single-pulse transcranial magnetic stimulation (TMS) over the upper-arm region of M1 (primary motor cortex). We found that TMS responses in shoulder monoarticular and elbow-shoulder biarticular muscles changed together with the interaction torques during movements in which the interaction torques were resistive. In contrast, TMS responses did not correlate with assistive interaction torques or with co-contraction. This suggests that the descending motor command includes compensation for passive limb dynamics. Furthermore, our results suggest that compensation for interaction torques involves the biarticular muscles, which span both shoulder and elbow joints and are in a biomechanically advantageous position to provide such compensation.

摘要

为了实现精确的运动,中枢神经系统必须克服多关节肢体固有的复杂性。例如,当单个手臂段的运动传播到相邻的段时,就会产生交互扭矩,导致它们在没有任何肌肉收缩的情况下运动。由于这些被动关节扭矩显著增加了由主动肌肉收缩产生的总扭矩,因此在规划或执行目标导向运动时必须考虑到它们。我们研究了皮质脊髓束在人类手臂运动中补偿交互扭矩的作用。12 名受试者在机器人外骨骼的支撑下用手臂达到视觉目标。到达一个目标伴随着辅助运动的交互扭矩,而到达另一个目标则伴随着抵抗运动的交互扭矩。使用单脉冲经颅磁刺激(TMS)在上臂 M1(初级运动皮层)区域对运动过程中的不同时间点进行皮质脊髓兴奋性评估。我们发现,当交互扭矩为抵抗性时,TMS 对肩单关节和肘肩双关节肌肉的反应与交互扭矩一起变化。相比之下,TMS 反应与辅助交互扭矩或共同收缩无关。这表明下行运动指令包括对被动肢体动力学的补偿。此外,我们的结果表明,交互扭矩的补偿涉及双关节肌肉,这些肌肉跨越肩部和肘部关节,处于提供这种补偿的生物力学有利位置。

相似文献

1
Descending corticospinal control of intersegmental dynamics.
J Neurosci. 2011 Aug 17;31(33):11968-79. doi: 10.1523/JNEUROSCI.0132-11.2011.
2
Cortical and corticospinal output modulations during reaching movements with varying directions and magnitudes of interaction torques.
Neuroscience. 2015 Dec 17;311:268-83. doi: 10.1016/j.neuroscience.2015.10.032. Epub 2015 Oct 23.
3
Rapid plasticity of motor corticospinal system with robotic reach training.
Neuroscience. 2013 Sep 5;247:55-64. doi: 10.1016/j.neuroscience.2013.05.001. Epub 2013 May 11.
4
Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.
J Neurophysiol. 2017 Oct 1;118(4):1984-1997. doi: 10.1152/jn.00178.2017. Epub 2017 Jul 12.
5
Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics.
Exp Brain Res. 1998 Apr;119(4):493-503. doi: 10.1007/s002210050365.
6
The human motor cortex contributes to gravity compensation to maintain posture and during reaching.
J Neurophysiol. 2023 Jan 1;129(1):83-101. doi: 10.1152/jn.00367.2021. Epub 2022 Nov 30.
9
Compensation for interaction torques during single- and multijoint limb movement.
J Neurophysiol. 1999 Nov;82(5):2310-26. doi: 10.1152/jn.1999.82.5.2310.

引用本文的文献

2
Control signal dimensionality depends on limb dynamics.
PLoS One. 2025 Apr 30;20(4):e0322092. doi: 10.1371/journal.pone.0322092. eCollection 2025.
3
The mechanisms of manual therapy: A living review of systematic, narrative, and scoping reviews.
PLoS One. 2025 Mar 18;20(3):e0319586. doi: 10.1371/journal.pone.0319586. eCollection 2025.
5
Implicit motor sequence learning using three-dimensional reaching movements with the non-dominant left arm.
Exp Brain Res. 2024 Dec;242(12):2715-2726. doi: 10.1007/s00221-024-06934-4. Epub 2024 Oct 8.
7
Muscle anatomy is reflected in the spatial organization of the spinal motoneuron pools.
Commun Biol. 2024 Jan 15;7(1):97. doi: 10.1038/s42003-023-05742-w.
8
Gravity-efficient motor control is associated with contraction-dependent intracortical inhibition.
iScience. 2023 Jun 15;26(7):107150. doi: 10.1016/j.isci.2023.107150. eCollection 2023 Jul 21.
10
The human motor cortex contributes to gravity compensation to maintain posture and during reaching.
J Neurophysiol. 2023 Jan 1;129(1):83-101. doi: 10.1152/jn.00367.2021. Epub 2022 Nov 30.

本文引用的文献

1
Caveats when studying motor cortex excitability and the cortical control of movement using transcranial magnetic stimulation.
Clin Neurophysiol. 2010 Feb;121(2):121-3. doi: 10.1016/j.clinph.2009.10.009. Epub 2009 Dec 9.
3
Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints.
J Neurophysiol. 2009 Nov;102(5):3004-15. doi: 10.1152/jn.00453.2009. Epub 2009 Aug 26.
4
Temporal evolution of "automatic gain-scaling".
J Neurophysiol. 2009 Aug;102(2):992-1003. doi: 10.1152/jn.00085.2009. Epub 2009 May 13.
5
Muscle cocontraction following dynamics learning.
Exp Brain Res. 2008 Sep;190(2):153-63. doi: 10.1007/s00221-008-1457-y. Epub 2008 Jun 27.
6
Differentiating between two models of motor lateralization.
J Neurophysiol. 2008 Aug;100(2):565-75. doi: 10.1152/jn.90349.2008. Epub 2008 May 21.
8
Long-latency reflexes of the human arm reflect an internal model of limb dynamics.
Curr Biol. 2008 Mar 25;18(6):449-53. doi: 10.1016/j.cub.2008.02.053.
9
Transcranial magnetic stimulation during voluntary action: directional facilitation of outputs and relationships to force generation.
Brain Res. 2007 Dec 14;1185:103-16. doi: 10.1016/j.brainres.2007.09.003. Epub 2007 Sep 14.
10
Endpoint stiffness of the arm is directionally tuned to instability in the environment.
J Neurosci. 2007 Jul 18;27(29):7705-16. doi: 10.1523/JNEUROSCI.0968-07.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验