Gueugneau Nicolas, Martin Alain, Gaveau Jérémie, Papaxanthis Charalambos
INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000 Dijon, France.
iScience. 2023 Jun 15;26(7):107150. doi: 10.1016/j.isci.2023.107150. eCollection 2023 Jul 21.
In humans, moving efficiently along the gravity axis requires shifts in muscular contraction modes. Raising the arm up involves shortening contractions of arm flexors, whereas the reverse movement can rely on lengthening contractions with the help of gravity. Although this control mode is universal, the neuromuscular mechanisms that drive gravity-oriented movements remain unknown. Here, we designed neurophysiological experiments that aimed to track the modulations of cortical, spinal, and muscular outputs of arm flexors during vertical movements with specific kinematics (i.e., optimal motor commands). We report a specific drop of corticospinal excitability during lengthening versus shortening contractions, with an increase of intracortical inhibition and no change in spinal motoneuron responsiveness. We discuss these contraction-dependent modulations of the supraspinal motor output in the light of feedforward mechanisms that may support gravity-tuned motor control. Generally, these results shed a new perspective on the neural policy that optimizes movement control along the gravity axis.
在人类中,沿着重力轴高效移动需要肌肉收缩模式的转变。将手臂向上抬起涉及手臂屈肌的缩短收缩,而相反的动作则可以借助重力依靠延长收缩。尽管这种控制模式是普遍存在的,但驱动重力导向运动的神经肌肉机制仍然未知。在这里,我们设计了神经生理学实验,旨在追踪在具有特定运动学(即最佳运动指令)的垂直运动过程中,手臂屈肌的皮质、脊髓和肌肉输出的调制情况。我们报告了在延长收缩与缩短收缩期间皮质脊髓兴奋性的特定下降,同时皮质内抑制增加,而脊髓运动神经元反应性没有变化。我们根据可能支持重力调节运动控制的前馈机制,讨论了这些与收缩相关的脊髓上运动输出调制。总体而言,这些结果为优化沿重力轴运动控制的神经策略提供了新的视角。