Paulus T J, Tuan J S, Luebke V E, Maine G T, DeWitt J P, Katz L
Fermentation Development, Abbott Laboratories, North Chicago, Illinois 60064.
J Bacteriol. 1990 May;172(5):2541-6. doi: 10.1128/jb.172.5.2541-2546.1990.
A mutant strain derived by chemical mutagenesis of Saccharopolyspora erythraea (formerly known as Streptomyces erythreus) was isolated that accumulated erythromycin C and, to a lesser extent, its precursor, erythromycin D, with little or no production of erythromycin A or erythromycin B (the 3"-O-methylation products of erythromycin C and D, respectively). This mutant lacked detectable erythromycin O-methyltransferase activity with erythromycin C, erythromycin D, or the analogs 2-norerythromycin C and 2-norerythromycin D as substrates. A 4.5-kilobase DNA fragment from S. erythraea originating approximately 5 kilobases from the erythromycin resistance gene ermE was identified that regenerated the parental phenotype and restored erythromycin O-methyltransferase activity when transformed into the erythromycin O-methyltransferase-negative mutant. Erythromycin O-methyltransferase activity was detected when the 4.5-kilobase fragment was fused to the lacZ promoter and introduced into Escherichia coli. The activity was dependent on the orientation of the DNA relative to lacZ. We have designated this genotype eryG in agreement with Weber et al. (J.M. Weber, B. Schoner, and R. Losick, Gene 75:235-241, 1989). It thus appears that a single enzyme catalyzes all of the 3"-O-methylation reactions of the erythromycin biosynthetic pathway in S. erythraea and that eryG codes for the structural gene of this enzyme.
通过对糖多孢红霉菌(以前称为红色链霉菌)进行化学诱变得到了一个突变菌株,该菌株积累了红霉素C,在较小程度上还积累了其前体红霉素D,而很少或不产生红霉素A或红霉素B(分别为红霉素C和D的3''-O-甲基化产物)。该突变体缺乏以红霉素C、红霉素D或类似物2-去甲红霉素C和2-去甲红霉素D为底物时可检测到的红霉素O-甲基转移酶活性。从糖多孢红霉菌中鉴定出一个约4.5千碱基的DNA片段,该片段距红霉素抗性基因ermE约5千碱基,当将其转化到红霉素O-甲基转移酶阴性突变体中时,可恢复亲本表型并恢复红霉素O-甲基转移酶活性。当将该4.5千碱基片段与lacZ启动子融合并导入大肠杆菌时,可检测到红霉素O-甲基转移酶活性。该活性取决于DNA相对于lacZ的方向。我们与Weber等人(J.M. Weber,B. Schoner和R. Losick,Gene 75:235 - 241,1989)一致,将此基因型命名为eryG。因此,似乎单一酶催化糖多孢红霉菌中红霉素生物合成途径的所有3''-O-甲基化反应,并且eryG编码该酶的结构基因。