Suppr超能文献

Gcm/Glide 依赖性胶质细胞转化依赖于神经干细胞的年龄,而不依赖于分裂,触发了在脊椎动物胶质细胞中保守的染色质特征。

Gcm/Glide-dependent conversion into glia depends on neural stem cell age, but not on division, triggering a chromatin signature that is conserved in vertebrate glia.

机构信息

Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC/CNRS/INSERM/UDS, BP 10142, 67404 ILLKIRCH, CU de Strasbourg, France.

出版信息

Development. 2011 Oct;138(19):4167-78. doi: 10.1242/dev.070391. Epub 2011 Aug 18.

Abstract

Neurons and glia differentiate from multipotent precursors called neural stem cells (NSCs), upon the activation of specific transcription factors. In vitro, it has been shown that NSCs display very plastic features; however, one of the major challenges is to understand the bases of lineage restriction and NSC plasticity in vivo, at the cellular level. We show here that overexpression of the Gcm transcription factor, which controls the glial versus neuronal fate choice, fully and efficiently converts Drosophila NSCs towards the glial fate via an intermediate state. Gcm acts in a dose-dependent and autonomous manner by concomitantly repressing the endogenous program and inducing the glial program in the NSC. Most NSCs divide several times to build the embryonic nervous system and eventually enter quiescence: strikingly, the gliogenic potential of Gcm decreases with time and quiescent NSCs are resistant to fate conversion. Together with the fact that Gcm is able to convert mutant NSCs that cannot divide, this indicates that plasticity depends on temporal cues rather than on the mitotic potential. Finally, NSC plasticity involves specific chromatin modifications. The endogenous glial cells, as well as those induced by Gcm overexpression display low levels of histone 3 lysine 9 acetylation (H3K9ac) and Drosophila CREB-binding protein (dCBP) Histone Acetyl-Transferase (HAT). Moreover, we show that dCBP targets the H3K9 residue and that high levels of dCBP HAT disrupt gliogenesis. Thus, glial differentiation needs low levels of histone acetylation, a feature shared by vertebrate glia, calling for an epigenetic pathway conserved in evolution.

摘要

神经元和神经胶质细胞由称为神经干细胞(NSC)的多能前体细胞分化而来,这一过程受到特定转录因子的激活。在体外研究中已经表明,NSC 具有非常强的可塑性;然而,主要挑战之一是在体内细胞水平上理解谱系限制和 NSC 可塑性的基础。我们在这里表明,过度表达 Gcm 转录因子可完全有效地将果蝇 NSC 转化为神经胶质命运,该转录因子控制着神经胶质与神经元命运的选择,通过中间状态。Gcm 通过同时抑制内源性程序和诱导 NSC 中的神经胶质程序,以剂量依赖和自主的方式发挥作用。大多数 NSC 会分裂多次以构建胚胎神经系统,最终进入静止状态:值得注意的是,Gcm 的神经胶质发生潜能随时间而降低,并且静止 NSC 抵抗命运转化。事实证明,Gcm 能够转化不能分裂的突变 NSC,这表明可塑性取决于时间线索,而不是有丝分裂潜能。最后,NSC 可塑性涉及特定的染色质修饰。内源性神经胶质细胞以及由 Gcm 过表达诱导的神经胶质细胞显示出低水平的组蛋白 3 赖氨酸 9 乙酰化(H3K9ac)和果蝇 CREB 结合蛋白(dCBP)组蛋白乙酰转移酶(HAT)。此外,我们表明 dCBP 靶向 H3K9 残基,并且高水平的 dCBP HAT 会破坏神经胶质发生。因此,神经胶质分化需要低水平的组蛋白乙酰化,这是脊椎动物神经胶质共有的特征,需要保守的表观遗传途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验