Sorokin Elena P, Gasch Audrey P, Kimble Judith
Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706.
Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706.
Genetics. 2014 Oct;198(2):561-75. doi: 10.1534/genetics.114.169409. Epub 2014 Aug 21.
In multicellular organisms, genetic programs guide cells to adopt cell fates as tissues are formed during development, maintained in adults, and repaired after injury. Here we explore how a small molecule in the environment can switch a genetic program from one fate to another. Wild-type Caenorhabditis elegans XX adult hermaphrodites make oocytes continuously, but certain mutant XX adults make sperm instead in an otherwise hermaphrodite soma. Thus, puf-8; lip-1 XX adults make only sperm, but they can be switched from sperm to oocyte production by treatment with a small-molecule MEK inhibitor. To ask whether this chemical reprogramming is common, we tested six XX sperm-only mutants, but found only one other capable of cell fate switching, fbf-1; lip-1. Therefore, reprogramming competence relies on genotype, with only certain mutants capable of responding to the MEK inhibitor with a cell fate change. To gain insight into the molecular basis of competence for chemical reprogramming, we compared polyadenylated transcriptomes of competent and noncompetent XX sperm-only mutants in the absence of the MEK inhibitor and hence in the absence of cell fate reprogramming. Despite their cellular production of sperm, competent mutants were enriched for oogenic messenger RNAs relative to mutants lacking competence for chemical reprogramming. In addition, competent mutants expressed the oocyte-specific protein RME-2, whereas those lacking competence did not. Therefore, mutants competent for reprogramming possess an intersexual molecular profile at both RNA and protein levels. We suggest that this intersexual molecular signature is diagnostic of an intermediate network state that poises the germline tissue for changing its cellular fate in response to environmental cues.
在多细胞生物中,遗传程序引导细胞在发育过程中形成组织、在成体中维持组织状态以及在损伤后修复组织时确定细胞命运。在此,我们探究环境中的一种小分子如何将遗传程序从一种命运转变为另一种命运。野生型秀丽隐杆线虫XX成年雌雄同体持续产生卵母细胞,但某些突变的XX成年个体在其他方面为雌雄同体的体细胞中却产生精子。因此,puf-8; lip-1 XX成年个体只产生精子,但用小分子MEK抑制剂处理可使其从产生精子转变为产生卵母细胞。为了探究这种化学重编程是否常见,我们测试了六个仅产生精子的XX突变体,但仅发现另一个fbf-1; lip-1能够进行细胞命运转换。因此,重编程能力依赖于基因型,只有某些突变体能够对MEK抑制剂作出反应并改变细胞命运。为深入了解化学重编程能力的分子基础,我们比较了在不存在MEK抑制剂因而不存在细胞命运重编程的情况下,有重编程能力和无重编程能力的仅产生精子的XX突变体的多聚腺苷酸化转录组。尽管有重编程能力的突变体在细胞水平上产生精子,但相对于缺乏化学重编程能力的突变体,它们富含卵子发生相关的信使RNA。此外,有重编程能力的突变体表达卵母细胞特异性蛋白RME-2,而缺乏重编程能力的突变体则不表达。因此,有重编程能力的突变体在RNA和蛋白质水平上都具有两性分子特征。我们认为这种两性分子特征是一种中间网络状态的诊断标志,它使生殖系组织能够根据环境线索改变其细胞命运。